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F O R E W O R D  
 My first recollection of the Fibonacci sequence (0,1,1,2,3,5,8,13…) and the 

quotient of its successive numbers, phi (0.618), also known as the Fibonacci 
constant or the Golden Ratio, occurred in high school math class. Like pi (π) or 
Euler’s exponential constant, e, phi (φ) seemed meaningful only as a requirement 
for exams. 

 That phi persisted as an important mathematical concept through my engineering 
course of study in college was not particularly surprising. That it became a 
prevailing theme in a Humanities seminar on the artwork of Leonardo da Vinci, 
Michelangelo and the topic of what constitutes beauty, was so notable that I 
remember the class today, more than twenty years later. The notion that the 
Golden Ratio proposes an answer to the question of whether there is an objective 
measure of beauty has always been fascinating to me. 

 Later on, in various media, I casually noted references to the Fibonacci sequence 
in biology, geography, and other disciplines, but not until I took an earnest 
interest in commodities trading did I fully appreciate Fibonacci’s ubiquity. In 
technical trading (a topic for another book) Fibonacci ratios serve as a useful 
predictor of market movements. 

 In 2018, I purchased fibonacci.com to serve as a resource for those, like me, 
interested in the applications of this remarkable sequence and ratio, and I asked 
Shelley Allen to pen an introductory book on the origins and prevalence of the 
Fibonacci sequence in art, music, nature, and other disciplines. In this well-
researched arrangement, with numerous references and over 100 citations, Allen 
offers the reader a concise overview of the subject along with breadcrumbs for 
continued learning. Along the way, the reader will learn how Roman numerals 
were replaced in Europe, and how the “Rabbit Problem,” among other examples, 
changed math as we know it. It is my sincere ambition that the book inspires an 
appreciation not only for the math but also for the man who propagated it: 
Leonardo Pisano, a.k.a Master Fibonacci.  

 Tarek I. Saab  
Founder, fibonacci.com 
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I .  O R I G I N S  O F  T H E  F I B O N A C C I  
S E Q U E N C E  

 

n the early thirteenth century, in the midst of a period of dramatic 
transformation, medieval Italy enjoyed significant commercial growth 
and economic stability. The country was awash in capital, which was 
used to finance the construction of breathtaking Gothic cathedrals and 
numerous universities. Much of that money came from taxes levied on 
profits from the extensive trading that occurred between countless 

merchants who traveled frequently to and from Mediterranean cities and ports to 
the west, and Asia Minor, Syria, and Baghdad to the east. Some intrepid 
adventurers even traveled so far as India and China, bringing back with them 
exotic supplies and novel ideas, beliefs, and methodologies. Exposure to people, 
languages and cultures in and from other parts of the world through trade and war 
gradually led to an intellectual transformation in Europe. In “Leonardo of Pisa and 
His Liber Quadratorum,” American Professor R. B. McClenon explains that the 
crusades “awakened the European peoples out of their lethargy of previous 
centuries” and “brought them face to face with the more advanced intellectual 
development of the East.” Marco Polo, McClenon reminds us, was only “the most 
famous among many who in those stirring days truly discovered new worlds.” 

 In addition to being carriers of merchandise, traders and political representatives 
became “network specialists,” comprising a “textual network” of sorts, providing 

 6

I



a continuous exchange of written texts covering commercial, political, religious 
and literary topics (Roselaar). Courts which had access to unique intellectual 
resources reaped financial rewards; wealthy courts, therefore, financed some 
scholars permanently, sponsoring those who travelled from court to court, 
contributing to the spread of new ideas. Knowledge was also circulated via the 
translation and transcription of books that were usually copied at monasteries 
(“Transition”). Among the most important ideas brought into Europe this way 
was the Hindu numeral system. 

 H I N D U  N U M E R A L S  A R E  I N T R O D U C E D  T O  E U R O P E  

Perhaps the most influential scholar of Western 
mathematics was the Greek mathematician 
Euclid, who lived from about 325 B.C. to about 
265 B.C. His treatise on geometry, The Elements, 
written in thirteen books (chapters), contained 
everything known at that time about number 
theory. Notably, it includes an original geometric 
treatment of irrational numbers as well as the 
first known written definition of the “extreme 
and mean ratio” between the greater and lesser 
segments of a line, what is presently known as 
the Golden Ratio (Fitzpatrick). The significance 
of Euclid’s book, The Elements, was evidenced by 
the fact that only the Bible was printed and 

studied more at that time (“Euclid”). Another 
important contributor to progress was the Salerno physician Constantine, who, 
early in the eleventh century, traveled thirty-nine years throughout Africa, Asia, 
and India, learning the Oriental sciences, and whose manuscripts were used as 
textbooks for centuries (Smith and Karpinski). 

 Hindu numeral forms appeared in Christian Europe long before manuscripts 
documented their arrival, for traders, travelers and ambassadors carried them 
from the East to various European markets. Most traders were rather good at 
transporting and applying new information and business methods but were less 
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concerned with documenting sources, so pinpointing an exact date of adoption of 
Hindu numeral forms remains a mystery (Smith and Karpinski). 

  

 C A L C U L A T I N G :  F I N G E R S  T O  A B A C U S   

 For centuries, traders in the Muslim world and Europe used either finger 
arithmetic or a mechanical abacus to perform calculations. The earliest of these 
devices were simple boards dusted with sand on which numbers could be traced. 
The Hebrew word for dust, avaq, may be the origin of the name “abacus.” Later 
versions consisted of a flat board upon which were drawn or carved ruled lines; 
small pebbles were placed and moved around on these lines to indicate addition 
or subtraction. Since the Latin word for a pebble is calculus, this form of early 
calculation became known as “calculus” (Devlin, Finding 30).  Medieval abaci had 
counters sliding along wires. Typically, an abacus had four wires, with beads on 
each wire representing units. An abacus was sufficient for conducting simple 
arithmetic operations, but users were at an enormous disadvantage when 
attempting to handle more complex computations. Since medieval merchants 
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simply added and subtracted most of the time, they could manage using just 
finger calculations or Roman numerals. The fundamental disadvantage was, of 
course, the lack of a place-value system. (Livio 93-94). 

 Before man used written symbols for math, he used images to represent numerals 
and mathematical operations. Finger signs were particularly convenient and 
popular for calculating, but successful utilization required a great deal of practice 
to develop skill and dexterity. Nevertheless, because it was a reliable calculation 
method, the skill of calculating with fingers was preserved in various societies, 
passed from one generation to the next (“Calculating”).  

 Finger calculations facilitated communication across language barriers for 
centuries. Ever desirous of educating the masses, scholars transcribed finger 
calculating representations in books; the earliest known transcription was written 
by the Venerable Bede (circa 673–735), an English Benedictine monk. In his book, 
De Ratione Temporum, he provides “a complete explanation of counting with fingers 
and rules for this method of calculating.” Drawings in his text show that a person 
using both hands is able to represent all the numbers from 1 to 9,999 
(“Calculating”). 

 Calculating with fingers remained popular even after the introduction of Indo-
Arabic numerals because it enabled higher calculations as well as counting, 
addition and subtraction. Scholars considered finger counting so important that a 
calculation manual was regarded as incomplete if it did not contain drawings 
showing the various finger positions (“Calculating”).  

 C A L C U L A T I N G :  F I N G E R S  A N D  H I N D U - A R A B I C  
N U M E R A L S  

 This latter fact explains why Leonardo Pisano’s first book, Liber Abaci, includes 
instruction on “how the numbers must be held in the hands” (Devlin, Finding 89). 
At the end of the first chapter he includes a sophisticated system of finger 
counting as an aid for calculating in the “new” place-value system. The ancient 
method of finger counting was not deposed by the abacus, nor was it truly pushed 
into the background in Central Europe until the triumph of written calculation 
with Indo-Arabic numerals well into the thirteenth century (“Calculating”). 
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 The problem with the abacus or finger calculations is that these methods require 
considerable practice to achieve accuracy and speed. Additionally, there is no way 
to correct errors or check for accuracy because “neither method leaves a record of 
the calculation.” When trading, one needs to be able to inspect records and audit 
transactions regularly, explains Keith Devlin, the mathematical historian who 
authored Finding Fibonacci: The Quest to Rediscover the Forgotten Mathematical Genius 
Who Changed the World (31). A better method was sorely needed. 

 In Baghdad, among the Arab scholars who studied and translated Greek and 
Hindu mathematical texts was a distinguished mathematician called Abu Abdallah 
Muhammad ibn Musa Al-Khwˆarizmˆı (ca. 780 to ca. 850). By the middle of the 
twelfth century, both of Al-Khwˆarizmˆı’s books had been translated into Latin by 
scholars. These became essential resources for Europeans who wanted to learn the 
new mathematics. But Al-Khwˆarizmˆı’s approach did not allow people to correct 
errors because it “involved cancelation and over-writing, which made it impossible 
to track the course of the calculation after it was completed” (Devlin, Finding 
76-80). 

 Although Al-Khwˆarizmˆı wrote about the Hindu-Arabic numerals in the ninth 
century, translations of his work did not appear in Europe until the twelfth 
century. Yet, even then, the Hindu-Arabic numerals did not completely replace the 
daily and commercial use of Roman numerals until the fifteenth century. When a 
region adopted the Hindu-Arab numerals, they were often only used by 
mathematicians, surveyors and scientists; this was the case even in Arab lands 
(Devlin, Man 42). 
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 Calculating with Hindu-Arabic numerals coexisted with the use of the abacus 
until the early thirteenth century. Indeed, one of the reasons people may have 
been reluctant to discard Roman numerals altogether is because they are “well 
suited for use on the abacus.” Before he was made Pope Sylvester II in the tenth 
century, Gerbert of Aurillac was a scholar and teacher who invented a new abacus, 
known as the Gerbertian abacus. The counters of his abacus were marked with 
Hindu-Arabic numerals (“Transition”). 

 Some twelfth-century translations of Arab treatises on algorism - the art of 
calculating by means of nine figures and zero (Merriam-Webster) - present 
calculations conducted with Roman numerals while others use Hindu-Arabic 
numerals. The early thirteenth century brought the appearance of some “very 
influential treatises on algorism” which “show a greater acquaintance with the 
new number system than the translations from the 12th century” (“Transition”). 
Yet, number forms varied widely from region to region, and nowhere in Europe 
were Hindu-Arabic numerals used exclusively. 

 Not long after Al-Khwˆarizmˆı, the great Egyptian mathematician Abu Kamil (c. 
850-c. 930), author of The Book of Algebra, sometimes worked on problems until he 
found all possible solutions; for one problem, he calculated and recorded 2676 
solutions! (Sesiano). This unique, meticulous approach was adopted by Leonardo 
Pisano. 

 L E O N A R D O  P I S A N O ,  A . K . A .  F I B O N A C C I  

 Al-Khwˆarizmˆı’s text was written in the ninth century for use by merchants as 
well as scholars and astronomers (Devlin, Man 16). In the West, however, only 
educated men read the Latin translations of his works. Therefore, medieval Italian 
merchants who had not had the benefit of formal education were largely (if not 
completely) unaware of the Hindu-Arabic numerals and how to apply them for 
easier calculation. To remedy this situation, the Italian Leonardo Pisano described 
methods in his book Liber Abaci which were intended, from the outset, to be 
mastered by merchants and other businessmen as well as scholars (Devlin, Finding 
80). 

 As was common practice at the time, Leonardo as an author borrowed ideas, 
methods, and explanations (sometimes the very words) of knowledgeable experts 
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preceding him. Leonardo acknowledged that he was aware of Al-Khwˆarizmˆı’s 
books and commentaries on them; he had possibly even studied them. He made 
“no claims of originality in Liber Abaci, although he did so in another of his books, 
Liber Quadratorum” (Devlin, Finding 81). 

 Some people confuse Leonardo of Pisa with Leonardo da Vinci, polymath of the 
Renaissance, but the famous inventor, scientist, and painter of the “Mona Lisa” 
was born in Vinci, between and Florence, in 1452, about 200 years after the death 
of Leonardo of Pisa. 

 All that we know for certain about Leonardo Pisano is contained in a few 
sentences he wrote about himself in the 1228 edition of his famous Liber Abaci 
(Horadam). Presented here is the paragraph in English, translated from Latin by 
Richard E. Grimm in “The Autobiography of Leonardo Pisano” (1973): 

  “After my father's appointment by his homeland as state 
official in the customs house of Bugia for the Pisan 
merchants who thronged to it, he took charge; and, in 
view of its future usefulness and convenience, had me in 
my boyhood come to him and there wanted me to devote 
myself to and be instructed in the study of calculation for 
some days. There, following my introduction, as a 
consequence of marvelous instruction in the art, to the 
nine digits of the Hindus, the knowledge of the art very 
much appealed to me before all others, and for it I 
realized that all its aspects were studied in Egypt, Syria, 
Greece, Sicily, and Provence, with their varying methods; 
and at these places thereafter, while on business, I 

pursued my study in depth and learned the give-and-take 
of disputation. But all this even, and the algorism, as well 
as the art of Pythagoras I considered as almost a mistake 

in respect to the method of the Hindus. Therefore, embracing more stringently that method of 
the Hindus, and taking stricter pains in its study, while adding certain things from my own 
understanding and inserting also certain things from the niceties of Euclid’s geometric art, I 
have striven to compose this book in its entirety as understandably as I could, dividing it into 
fifteen chapters. Almost everything which I have introduced I have displayed with exact proof, 
in order that those further seeking this knowledge, with its pre-eminent method, might be 
instructed, and further, in order that the Latin people might not be discovered to be without it, 
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as they have been up to now. If I have perchance omitted anything more or less proper or 
necessary, I beg indulgence, since there is no one who is blameless and utterly provident in all 
things.” 

 This exceptionally brief glimpse of the man's life provides provocative clues about 
“his personality and the mathematical quality of his mind.” These few sentences 
reveal that he was a man with great intellectual curiosity who was excited by 
mathematical scholarship and valued it so much that he wished to share his 
knowledge with the working class, not just scholars. The words with which he 
concludes his introduction to Liber Abaci show that he is open-minded, willing and 
even eager to learn new ideas, receptive to constructive criticism, and modest 
despite his genius. He was not only revered by readers, students, and authorities 
of his day, but modern scholars also conclude that he was a man well worthy of 
respect; some even develop a “warmth of feeling for the modest humility of the 
man” (Horadam). 

 In increasing numbers, serious mathematics scholars today are beginning to 
recognize that Leonardo Pisano may have been the “most noteworthy 
mathematical genius of the Middle Ages,” and definitely the most influential of all 
medieval writers in promoting the Hindu-Arabic numerals to European scholars. 
(Smith and Karpinski). 

 His given name was Leonardo, so his full name was Leonardo of Pisa, or Leonardo 
Pisano in Italian, and he was born about the year 1175. He is better known by the 
nickname that apparently was given him by the math historian Guillaume Libri in 
1838, six-and-a-half centuries after his birth: Fibonacci [pronounced fib-on-arch-
ee] which is short for filius Bonacci, is the name Leonardo ascribed himself in 
Liber Abaci (Livio; Knott). 

 An abbreviation of the Latin phrase, “filius Bonacci,” Fibonacci means “the son of 
Bonaccio.” Fi'-Bonacci, then, is a general name like the English names of Robin-
son and John-son or Bronson (Brown’s son) (Knott, Smith and Karpinski). But (in 
Italian) Bonacci is also the plural of Bonaccio; therefore, two early writers on 
Fibonacci (Boncompagni and Milanesi) regard Bonacci as his family name (as in 
"the Smiths" for the family of John Smith).  

 Fibonacci referred to himself in writings as "Bonacci" and "Bonaccii" as well as 
"Bonacij." It was common in medieval Pisa to mix spoken Italian with written 
Latin; there remains uncertainty about which is the most correct spelling of what 
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may be considered his surname. However, it is certain he did not use "Fibonacci" 
when referring to himself (Knott).   

 Bonacci may be a kind of nickname meaning "lucky son" (literally, "son of good 
fortune") which certainly seems representative of the fortuitous circumstances of 
his life, what little is known of it (Knott). Finally, Mario Livio explains in The 
Golden Ratio that the nickname Fibonacci can also mean “son of good 
nature” (Livio 92). Given that he was called “beloved” by his countrymen in an 
official proclamation in the year 1241, this last explanation for the meaning of his 
name, “Bonacci,” may be most plausible of all. Leonardo’s humility is evident in 
the introduction to Liber Abaci, when he says, “If by chance I have omitted 
anything more or less proper or necessary, I beg forgiveness, since there is no one 
who is without fault and circumspect in all matters” (Livio 94). 

 Occasionally he signed his name as Leonardo Bigollo since he was one who had 
studied in foreign lands and, in Tuscany, bigollo means “a traveler” (O’Connor 
and Robertson; Smith and Karpinski). Interestingly, the term may also mean 
“good-for-nothing” (O’Connor and Robertson) or “man of no importance” (in the 
Venetian dialect) (Livio 93). These are similar to yet another meaning of the word, 
which is “blockhead,” so some have thought Leonardo might have adopted the 
term as a humble way to identify himself or that it “may have been applied to him 
by the commercial world or possibly by the university circle,” and subsequently 
taken upon himself as a challenge “to prove what a blockhead could do” (Smith 
and Karpinski).  

 The historian of mathematics, Guillaume Libri, appears to have been the first to 
use the name “Fibonacci” when referring to Leonardo; this was found in a 
footnote in his 1838 book Histoire des Sciences Mathematique en Italie (History of the 
Mathematical Sciences in Italy) (Livio 93). Since most modern authors now call 
Leonardo Pisano “Fibonacci,” one should be prepared to see any of the above 
variations of his name when reading about him. 

 Contemporary writers identify Leonardo's father as Guglielmo Bonacci (William), 
and mention that he was a kind of customs officer in the present-day Algerian 
port city of Béjaïa, formerly known as Bugia or Bougie, where wax candles (still 
called "bougies" in French) were exported to France (Devlin, Man 9). A legal 
document provides the name of one brother, Bonaccinghus, but nothing further is 
known about the rest of Leonardo’s family (Livio; Smith and Karpinski). 
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 Leonardo says his father was a kind of “state official;” it is unclear what the 
position entails precisely. By some accounts, Guglielmo was elected the consul for 
Pisa. This was a highly prestigious public office so, if this was in fact the case, 
most likely William was a wealthy merchant himself before he became the 
representative for the Pisan merchants who were trading in Bugia (O’Connor and 
Robertson). 

 Pisans exported European goods to North Africa through Bugia and brought 
various Eastern luxury items to Europe, including silks, spices, and a fine grade of 
beeswax useful for candles, and high-quality leather (Devlin, Man 39). At the close 
of the twelfth century, Bugia was a center of African commerce sheltered by 
Mount Gouraya at the mouth of the Wadi Soummam near Cape Carbon. Being a 
commercial agent of one of the most important Islamic ports on the Barbary Coast 
concerned with taxation of trade between Pisa and North Africa, Fibonacci’s 
father would have spent a lot of time monitoring trade transactions in the bustling 
harbor. He must have been fluent in Arabic since he was expected to maintain 
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relations with the Muslim authorities, safeguard the rights of the fondaco (trading 
post), keep records of the goods passing through, and oversee the proper levying 
of taxes (Devlin, Man 41). Of course, Guglielmo would have recognized the value 
of accounting skills and surely believed “the future would be bright for people 
who understood numbers thoroughly” ("Fibonacci" Famous). Thus, Leonardo was 
summoned by his father and taken as a child (Devlin says he was likely no more 
than fifteen years old) to the Arab port city on the North African coast for the 
furtherance of his mathematics (accounting) education under the tutelage of 
Moorish masters (Devlin, Finding 13; Livio; Smith and Karpinski).   

 L E O N A R D O ’ S  H O M E :  P I S A  

 Pisa at the dawn of the thirteenth century was in the midst of a “golden age” of 
commercial, religious, and intellectual prosperity (Smith and Karpinski). She was 
a busy port and a major Mediterranean trading hub for the importing and 
exporting of merchandise from both inland and overseas (Livio 93). 

 “When Leonardo was growing up, a new, heavily fortified city wall 
was being constructed, to protect the city from attack both by 

Muslims – this was the time of the Crusades – and by rival 
Italian cities as part of the ongoing political struggle” between 
the empire and the papacy (Devlin, Finding 57). Rather than 
having a detrimental effect, this interurban warfare contributed 
to the stimulation of commercial activity (Smith and 
Karpinski). In addition, the city’s many naval fleet victories 
secured the profitable expansion of trading territory throughout 
the Mediterranean and also into Syria, significantly enriching 
the government coffers. At this time, Pisa’s military and 
economic dominance in the Mediterranean rivaled those of 
Genoa and Venice (“Editors”).  

In addition to city walls, the thriving economy inspired the 
people of Pisa to begin building an impressive cathedral 
complex, the Field of Miracles, comprising a cathedral, a 
baptistery, a bell tower and a cemetery. The 179-foot bell tower, 

begun in 1173, is known as the Leaning Tower of Pisa and is universally 
recognized as an unofficial emblem of Italy.  
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 Leonardo would have encountered a commercial frenzy every time he 
accompanied his merchant father to the customs houses or in bustling streets 
beside the crowded River Arno. Such activity required unceasing measurements of 
merchandise quantities and price negotiations; as a customs officer, Leonardo’s 
father would need to calculate import tax levies and audit ships’ manifests. He 
must have himself been just one of the many scribes and stewards recording 
inventories, orders and transactions. Prices were recorded in librae (pounds), 
solidi (shillings), and denarii (pennies); scribes entered the values in long 
columns, using Roman numerals, and used abaci to perform the calculations 
(Devlin, Finding 62).  

 Since Leonardo’s father was a prosperous merchant participating in all of these 
business activities, the enormous power and indispensability of arithmetic surely 
made an impression upon the young boy (Devlin, Finding 58). At the wharves, 
Leonardo observed other professions besides merchants and traders. He saw 
surveyors and engineers and shipbuilders working with math. Pisa built and 
maintained a fleet of hundreds of naval and commercial ships, so incoming cargo 
in the harbor consisted often of timbers for building as well as sacks of grain, salt 
from Sardinia, squirrel skins from Sicily, and goatskins from North Africa. There 
were shipments of leather, alum, and dyes for the textile manufacturers of Italy 
and northwest Europe. Crates of spices sailed in from the Far East and barrels of 
wine were common. Among her many exports, Pisan ships regularly transported 
“barrels of Tuscan wine and oil, bales of hemp and flax, and bars of smelted iron 
and silver” (Devlin, Finding 59). 

 Presumably, Leonardo had on countless occasions watched scribes as they listed 
prices in Roman numerals and added them up using an abacus. The impracticality 
of the Roman system for complex applications in commerce and trade (such as 
currency conversion, or commission calculations) would have been frustratingly 
apparent to an inquisitive merchant’s son who surely wondered whether there 
was not a more efficient way of calculating than Roman numerals and an abacus 
(Devlin, Finding 62 and Man 15).  

 E D U C A T I O N  A N D  T R AV E L  

 Medieval churches provided formal education for wealthy citizens, so Leonardo 
would likely have attended school “between ten and twelve years of age in the 
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cathedral in Pisa” (Devlin, Finding 37). Dr. Thomas O’Shea, scholar, author, and 
retired educator in British Columbia, shares an excerpt from a memoir written by 
a gentleman of Pisa born in 1308 which “gives us some idea of how students of 
that time were prepared for their future in the world of trade and commerce.” It is 
reasonable to expect Leonardo’s education would have been similar. Olinto 
Bernardini writes: 

 “Naturally, it was assumed that my two brothers and I would each assume a place in the 
family Company. It was also assumed that we would become competent in the mathematical 
skills used to run businesses in our parts.  Therefore, at the age of ten, as was the custom, my 
father sent me to begin the study of abaco. This course, under Maestro Pietro Cataneo of Pisa, 
lasted two years, but well before it was over, it had changed my life forever. 

 Abaco schooling normally began with an introduction to the Hindu numbers, and with an 
explanation of the place value that gave them meaning. But already familiar with this 
numeration, and well-versed in multiplication and addition facts, I quickly advanced to the 
next four mute [stages] where students were taught division and fractions. All this I devoured 
eagerly and before long had even caught up to students who were one year older. From there, 
the maestro introduced me to the core of abaco learning: the mathematics of business that even 
my great-grandfather had used in his quest to make a fortune. 

 At this level, that is, in the sixth and seventh mute, we were taught to work with prices, 
barter, partnerships, alligation, proportions, monetary systems, measurements, interest and 
discount. Our teacher took great care in imparting this knowledge to us, for he appreciated 
that he had but two years to prepare us for important positions in business.”    

 The two-thousand-mile (ca. three-thousand kilometer) journey to Bugia would 
have taken approximately two months, during which time the ship would have 
stayed close to land for greater protection from the weather and to pull into ports 
for trading. In these ports Leonardo would have met Arab traders who had 
ventured in their travel even farther afield than the Italians, “journeying not only 
around the Mediterranean but to Russia, India, and China, and deep into the 
interior of Africa” (Devlin, Man 41). Arriving in Bugia, Leonardo would have likely 
joined his father in the sizable Italian community near the harbor (Devlin, Man 
41).  

 Later, in his autobiographical paragraph in Liber Abaci (1228), Leonardo explained 
that, after leaving Bugia, he travelled extensively around the Mediterranean Sea, 
touring the cities of the East along the Mediterranean coast, visiting the great 
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markets of Egypt and Asia Minor, Syria, Sicily and Provence, Constantinople and 
Greece. While he was touring, he met and learned from scholars as well as from 
merchants, “imbibing a knowledge of the various systems of numbers in use in 
the centers of trade” (Smith and Karpinski). With a mastery of Arabic, Leonardo 
would have been able to broaden his mathematical knowledge well beyond what 
he had been able to observe in the Bugian marketplace (Devlin, Man 46). He 
wrote: 

  “When my father, who had been appointed by his country as public notary in the customs at 
Bugia acting for the Pisan merchants going there, was in charge, he summoned me to him 
while I was still a child, and having an eye to usefulness and future convenience, desired me to 
stay there and receive instruction in the school of accounting. There, when I had been 
introduced to the art of the Indians' nine symbols through remarkable teaching, knowledge of 
the art very soon pleased me above all else and I came to understand it…”  
(O’Connor and Robertson) 

 This philomath inevitably realized that the mathematics system used by Oriental 
merchants had many advantages over all others. In fact, he admitted (later in the 
paragraph) that he considered every other mathematical system as almost a 
mistake compared to the method of the Hindus. 

 Leonardo sought instruction in the Hindu-Arabic arithmetic system and practiced 
it carefully. He recognized its superiority over the clumsy Roman numeral system 
in the West, and accordingly decided to write a book to explain the superior 
system and its applications to the Italians (McClenon). Ending his travels around 
the year 1200, the scholar returned to Pisa and proceeded to share the “treasure of 
knowledge” he had acquired, supplemented by ideas of his own (O’Connor and 
Robertson; “Biography”). However, Leonardo did not merely copy the works of 
others; he was a brilliant mathematician in his own right. He was exceptionally 
skillful at explaining mathematical theories, problems, and solutions in a way that 
the common reader could understand. 

 L I B E R  A B A C I  1 2 0 2  ( 1 2 2 8 )  

 Leonardo’s greatest intellectual legacy is his book, Liber Abaci (The Book of 
Calculation). This book provides almost the only biographical information we have 
about him. No one knows why Leonardo dedicated the book to Michael Scotus, 
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who was the court astrologer to Holy Roman Emperor Frederick II, nor why he 
included the autobiographical information (Devlin, Man 43). It was uncommon for 
mathematically-focused texts to include such information. Mathematician/
historian Devlin explains this is because “most mathematicians are interested in 
mathematical results, not the people who discover them” (Finding 68). He says, 
“Mathematical truth is completely independent of human judgment, immutable, 
eternal, forms its own abstract world,” so, “to the mathematician, the historical 
details are of little relevance; it doesn’t matter when someone first proved a 
theorem; the focus is on the development of the ideas and how one train of 
thought led to another” (Finding 69). The first edition of Liber Abaci was a dense 
work suited more to scholars than the average man. But Leonardo seemed very 
occupied with producing practical solutions to common problems. Thus, in the 
preface of the second edition he revealed something of the intellectual heritage 
which inspired him to write the book in the first place.  

 The first copy of Liber Abaci appeared in Pisa in 1202. “When he finished writing 
it, he would have taken it to a local monastery to have copies made by the 
monks.” This is such a laborious method of publication that it could have taken a 
year or more to copy a manuscript as long as Liber Abaci (over 400 pages). After 
receiving peer commentary and suggestions for improvement, “he made changes 
and added to its contents, culminating in the second edition published in 
1228” (Devlin, Finding 85-86). 

 In modern publications, the most common spelling of the book’s title uses just 
one letter “b” in the word “Abaci,” a declension of the word ‘abacus’ in medieval 
Italy. This spelling is nonsensical, though, says Devlin, because “Leonardo was in 
fact showing how to do arithmetic without the need for any such device as an 
abacus.” Leonardo himself used the spelling “Abbaci” to mean ‘calculation.’ The 
words are similar in spelling, but very different in meaning. The first known 
written use of the word abbacus with this spelling was, in fact, in the prologue of 
his book, an intentional spelling change to differentiate Leonardo’s new method. 
It must have caught on, for in the years after Leonardo, the word abbaco was 
widely used in medieval Italy to describe the practice of calculating with the 
Hindu-Arabic number system (Devlin, Finding 11).  

 Since medieval authors rarely gave their manuscripts a title, neither did Leonardo; 
the name for his book comes from his opening statement: “Here begins the Book 
of Calculation; Composed by Leonardo Pisano, Family Bonacci; In the Year 1202.” 
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In later writings, he also referred to the work as Liber Numerorum, and in the 
dedicatory letter for his book Flos he referred to it as his Liber Maior de Numero 
(Devlin, Man 12). 

 Many consider Leonardo’s book the greatest arithmetic text of the Middle Ages, 
for he was the first mathematician to demonstrate the superiority of the Hindu-
Arabic numeral system versus the Roman system exemplified by Boethius; he did 
this by providing numerous examples of how to solve problems related to every 
major contemporary field of business. It is true that Leonardo's Liber Abaci was not 
the first book written in Italy to introduce and explain the Hindu-Arabic 
numerals, but no work previously produced was comparable in value, either in 
content or in quality of the exposition (McClenon). 

 Leonardo consulted many sources to write Liber Abaci, primarily Arabic texts or 
Latin translations thereof. He undoubtedly included information gleaned from his 
many discussions with the Arab mathematicians he encountered on his travels. 
He provided rigorous proofs to justify the methods, in the fashion of the ancient 
Greeks. For example, Abu Kamil’s book has seventy-four worked-out problems, 
and many of the more complicated ones, with identical solutions, are found in 
Liber Abaci (Devlin, Man 47, 57, 61). Leonardo explains the mathematical 
reasoning for each problem extensively, providing numerous examples and 
variations which were most valuable to the merchants and laymen learning the 
new calculating system (Devlin, Finding 80). 

 Liber Abaci is a general book of mathematics, but it differs from most because the 
author’s main purpose was to encourage everyone (especially merchants) to 
abandon Roman numerals and use the superior Indian system of numbers. 
Leonardo was an advocate for systemic change. Knowing the superiority of the 
new system for business, he devoted several chapters of his book to showing 
calculations of profit, interest, and currency conversions. Some scholars think the 
book was “too advanced for the mercantile class, and too novel for the 
conservative university circles” which were resistant to adopting Arabic numerals 
(Smith and Karpinski; Radford). Furthermore, it was so comprehensive, it has 
been called “encyclopaedic” (“Biography”). Moreover, at the time he published his 
book, only a few people knew the Hindu-Arabic numerals we use today: privileged 
European intellectuals who cared to study the translation of the works of Al-
Khwˆarizmˆı and Abu Kamil. Nevertheless, because Leonardo was so convinced 
that the Hindu-Arabic numerals and the place-value principle were far superior to 
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all other methods, he devoted the entire first seven chapters of his book to 
explanations of Hindu-Arabic notation and its use in practical applications (Livio 
92). 

 The book is relevant for mathematicians today because of “the mathematical 
insight and originality of the author, which constantly awaken our admiration, and 
also on account of the concrete problems” (McClenon). It is also of interest to 
historians, sociologists and economists, because it provides much information 
about the society in which he lived. For example, through his book, we learn that 
Pisan ships transported “pepper, a very important item of merchandise, and that 
the Pisan colony in Constantinople traded extensively with Egypt. Further 
evidence is also gleaned about the relative values of money coined in the mints of 
different cities, and about the problem of alloying of coins to be 
minted” (Horadam).  

 In Pisa, Leonardo not only became an author of books, but he was likely also a 
maestri d’ abaco or “teacher of business arithmetic.” As such, he became so 
famous that the Roman emperor asked the mathematics expositor to give a public 
demonstration of his ability during one of the emperor’s visits to Pisa (Livio 95). 

 Holy Roman Emperor Frederick II (1196-1250) was called Stuper Mundi 
("Wonder of the World") by his contemporaries because he was a highly educated 
and inquisitive man who “encouraged learning and scholarship of every kind;” he 
even conducted scientific experiments and wrote books of his own. Having a 
special interest in mathematics and impressed after reading Liber Abaci, the 
emperor invited Leonardo to his palazzo in Pisa (Horadam). 

 One of the emperor’s court mathematicians, Johannes (John) of Palermo, 
proposed three mathematical problems for Fibonacci to solve. Leonardo had been 
provided the problems in advance but the ingenious way he solved and explained 
the solutions was astounding (Horadam). 

 The Medieval Italian Cultural Association claims Emperor Federico II was so 
impressed that he granted Leonardo an annuity which enabled him to devote 
himself to his studies (“Arabic Numerals”). If this is true, that could explain how 
Leonardo was able financially to devote more time to writing a revised version of 
Liber Abaci. Indeed, soon after meeting the emperor, the mathematician dedicated 
his next major work to the emperor, perhaps in appreciation for sponsorship; he 
also published the solutions he had presented to the imperial court: two in Flos (a 

 2 4



copy of which he sent to Frederick) and one in Liber Quadratorum (Devlin, Man 
90-92). 

 L I S T  O F  L E O N A R D O  P I S A N O ’ S  M A T H E M A T I C A L  
W R I T I N G S   

 1202 (1228): Liber Abaci (The Book of Calculation) 

 1220: Practica Geometriae (The Practice of Geometry), a mixture of pure mathematics, 
theorems, proofs, and practical applications of geometry, such as using similar 
triangles to calculate the height of tall objects 

 Before 1225: “Epistola” and “Magistrum Theodorum” (A Letter to Master 
Theodore), a letter to Frederick II’s philosopher Theodorus Physicus, solving 
three problems in mathematics 

 1225: Liber Quadratorum (The Book of Square Numbers), a highly mathematical 
number theory book dealing with solutions to Diophantine equations 

 1225: Flos (The Flower), solutions to problems in algebra 

 n.d. (no date known): Di Liber Minor Guisa (A Smaller Manner), a book on 
commercial arithmetic (No copies exist today.) 

 n.d.: Commentary on Book X of Euclid’s Elements (No copies exist today.) 

 (Horadam; “Education”) 

 Practica Geometriae (1220) 

 The Practica Geometriae (The Practice of Geometry) is a substantial work on geometric 
practice (surveying, area and volume formulas for plane figures and bodies); it 
also contains a wide variety of interesting theorems which represent "a 
considerable advance over the Geometry of Boethius and Gerbert (Pope Sylvester 
II)" (Horadam). Leonardo well understood Euclidean geometry and the 
mathematical methods demonstrated in Practica Geometriae reproduce the brilliant 
techniques found in the works of others, particularly Abu Kamil’s On the Pentagon 
and the Decagon (Livio 96). Though it “shows no such originality as to enable us to 
rank Leonardo among the great geometers of history, it is excellently written, and 
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the rigor and elegance of the proofs are deserving of high praise” (McClenon). 
Furthermore, Flos, Magistrum Theodorum, and the Liber Quadratorum are so original 
and instructive, they show well the remarkable genius of this brilliant 
mathematician. 

 Liber Quadratorum (The Book of Squares) (1225) 

 Leonardo describes his presentation to Emperor Frederick II at the Pisan court in 
the dedication to this book, Liber Quadratorum, dated 1225 (McClenon). In it, he 
demonstrates a virtuosic command of number theory. The book, among other 
things, examines methods to find Pythogorean triples (O’Connor and Robertson). 
Even more impressive are his presentations of the properties of the squares and 
tasks that lead to quadratic equations; it has been called the most important work 
of number theory between Diophantus and Fermat (Gies; “Biography”). 

 Liber Minoris Guise (n.d.) 

 The Liber Minoris Guise (Book in a Smaller Manner) is a manuscript on commercial 
arithmetic referred to with description (rather than by title) by the Pisan several 
times as he was comparing it to his more extensive Liber Abaci. Additional proof 
this missing work once existed is a reference to it by an abbacus author who refers 
to Leonardo’s Libro di Minor Guise o Libro di Merchanti (Book in a Smaller Manner or 
Book for Merchants) (Devlin, Finding 28). 

 Because Leonardo lived two hundred years before mechanized printing was widely 
available in Europe, his books were handwritten and the only way to have a copy 
was to have a scribe handwrite another copy. Of his books, copies remain of Liber 
Abaci (1228), Practica Geometriae, Flos, and Liber Quadratorum. Regrettably, another 
of his manuscripts now completely lost is his commentary on Book X of Euclid's 
Elements (O’Connor and Robertson). No copies of his first Liber Abaci exist, and of 
his 1228 revision, only fourteen copies have been found. Seven are complete or 
nearly so while seven are fragments, consisting of between one-and-a-half and 
three of the book’s fifteen chapters (Devlin, Finding 82).  
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 L E O N A R D O ’ S  D E A T H  A N D  M E M O R I A L  

 No one knows when or how Leonardo of Pisa died (Horadam). After publication 
of his revised version of Liber Abaci in 1228, only one known document refers to 
him. This is a decree made by the Republic of Pisa in 1241 in which “the serious 
and learned Master Leonardo Bigollo” was granted an annual honorarium of 
twenty Pisan pounds plus expenses for services to the city. Historians believe this 
was either in return for advising on matters of accounting (such as advising on 
financial contracts stipulating long-term debt commitments to creditors) and 
teaching the citizens, or for service as city auditor (O’Connor and Robertson; 
Devlin, Man 99).  

 Even though he was famous in his lifetime as a brilliant mathematics expositor 
and, later, as a respected public servant, Leonardo was forgotten within 200 years 
of his death. Devlin says this should not be surprising since, “other than nobility, 
few people had anything recorded about them, even those who had achieved great 
things” (Finding 22). His name did not appear in any book on the history of 
science or mathematics for 400 years. 

 In 1495, Luca Paciolo resurrected the name of Leonardo Pisano, more than 250 
years after the Pisan decree (the last recorded proof that Leonardo was still alive). 
Pacioli printed a highly regarded, scholarly book titled, Summa de Arithmetica, 
Geometria, Proportioni et Proportionalita (All That is Known About Arithmetic, Geometry, 
Proportions, and Proportionality). The Venetian deliberately mentioned Leonardo as 
his most valuable source, stating, “Since we follow for the most part Leonardo 
Pisano, I intend to clarify now that any enunciation mentioned without the name 
of the author is to be attributed to Leonardo” (Devlin, Man 7). Despite this 
extraordinary endorsement, Leonardo’s contributions to mathematic intelligence 
lingered in obscurity and “his influence languished for many centuries and indeed 
Mathematics made no real progress for 300 years” (Horadam).   

 Then, late in the eighteenth century, another Italian mathematician named Pietro 
Cossali (1748-1815) came across this single reference to Leonardo in Pacioli’s 
book. Wondering why Pacioli was famous while the man whose work he 
“followed” was unknown, Cossali began to look for Pisano’s manuscripts (Devlin, 
Man 8).  

 In 1838, French historian Guillaume Libri gave Leonardo the manufactured 
surname ‘Fibonacci.’ Then, in the 1870s, another Frenchman, the mathematician 
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Edouard Lucas, assigned the name “Fibonacci sequence” to a fascinating number 
sequence that surfaces when one tries to solve one of the more recreational 
problems in Liber Abaci (Devlin, Finding 24). Leonardo has been called Fibonacci 
ever since. 

 A few memorials commemorate Fibonacci’s contributions to Italy, among them 
two street names - the quayside Lungarno Fibonacci (Fibonacci Way) in Pisa and 
the Via Fibonacci in Florence - and a statue of him (as seen on this book’s cover) 
with a “kind, scholarly expression,” in scholar’s garb, in the Camposanto, a 
historical cemetery on the Piazza dei Miracoli in Pisa (Devlin, Finding 36, 49). 

 F I B O N A C C I ’ S  I N T E L L E C T UA L  L E G A C Y  

 If what followed Leonardo ‘Fibonacci’ Pisano was an economic revolution, then 
Liber Abaci was the “gunshot that started the revolution.” There has been 
discovered in many Italian archives thousands of medieval manuscripts of short, 
handwritten textbooks in “practical arithmetic” which are so numerous they form 
their own extensive genre. These manuscripts are called libri d’abbaco (“abbacus 
books”) or trattati d’abbaco (“abbacus tracts”). “They are written in vernacular 
Italian, usually in the local dialect of the author. …The earliest of these were 
handwritten but after the invention of the printing press in the fifteenth century 
they became recognizable as a genre and some became best sellers.” (Devlin, 
Finding 25-27) Today there remains more than 400 such texts stretching over 300 
years. Part of their significance lies in the quantity; they are proof that their “rapid 
proliferation” signifies “the importance people attached to learning the new 
arithmetic.” It is evident that each one was written for a local audience, because 
the problems they presented were usually expressed in terms of the currency, 
weights and measures of the local town or region. Some were evidently written by 
more learned scholars who may well have been teachers who wrote them “to use 
in classes on practical arithmetic.” Indeed, by the end of the thirteenth century, 
there were “a number of ‘abbacus schools’ (scuole d’abbaco or botteghe d’abbaco) 
where ‘abbacus teachers’ (maestri d’abbaco) taught practical arithmetic” (Devlin, 
Finding 25-27). 

 Scholars studying these manuscripts extensively have concluded that it is possible 
to “construct an ancestral tree of books” leading to the original document, or 
source, of all the others. Devlin explains, “The entire genre began with a single 
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‘Abbacus Eve,’ the mother of all abbacus books” and that book, he asserts, is Liber 
Abaci. He says we know the “Abbacus Eve” was “written by Leonardo himself 
because no other contemporary mathematician was as accomplished (or he would 
surely have left his own collection of writings)” (Devlin, Finding 28). 

 The Hindu-Arabic numerals Fibonacci championed were obviously of inestimable 
worth to the expanding commercial enterprises of medieval European society. “Of 
greater importance was the long-range impact on Science and Mathematics of the 
new system of numeration which he publicized” (Horadam). Nevertheless, few 
mathematicians over the centuries were aware of his brilliance, most likely 
because his texts were written in Latin and have remained untranslated into 
modern languages for so long (eight hundred years!) (Horadam). 

 Ironically, Fibonacci is known primarily because of the sequence bearing his name 
“but which he treated only lightly.” Modern mathematicians have named an 
Association, a Journal, and a Bibliographical and Research Centre after Fibonacci, 
ensuring that his name (at least one of them) will not be quickly forgotten again 
(Horadam; Devlin, Finding 37). 
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 I I .  T H E  F I B O N A C C I  S E Q U E N C E  

 eonardo Pisano, or ‘Fibonacci,’ was a self-professed student of 
the arts of Greek theologian and mathematician Pythagoras 
( c . 5 6 9 - 4 7 5 B C E ) , w h o c o i n e d t h e t e r m 
‘mathematics’ (Μάθημα, ατος, τo,  that which is learned) to 
represent that abstract science which studies shape, quantity, 
and space (Donnegan 26). Pythagoras was primarily 

interested in number theories and their application to music rather than the use 
of numbers for everyday computation (O’Shea). Greek mathematician Euclid also 
greatly influenced Fibonacci; as highlighted previously, his thirteen books 
(chapters) on geometry in Elements (c. 300 BCE) provided definitions, postulates 
and axioms of geometry which Fibonacci knew well. Elements is considered by 
many the most scientifically significant mathematical work until the 20th century 
(“Euclid”). “Even today a large part of mathematical and geometrical elementary 
education is based on the Euclidean tradition” (“Euclid”). 

 Long before Pythagoras or Euclid, man recorded counting by “scratching tally 
marks on a stick or bone” (Devlin, Man 13). Mathematics has evolved greatly 
since then; today, math equations are so inconspicuously calculated by computers 
that most people tend to think about mathematics “only in the day-to-day context 
in which they themselves are immersed” (Radford). 

 One of the earliest proofs of math skills practice is a papyrus written by an 
Egyptian scribe named Ahmes (∼1650 BCE), who recorded a “series of 87 
exercises and problems, presumably for students to try with the assistance and 
guidance of a teacher” (Levy 21).  
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 The concept of “nothing” in math may have been represented first by a dot to 
indicate an empty placeholder, but zero was first used as a number in the seventh 
century (rather than as a mere concept) by the Indian mathematician and 
astronomer Brahmagupta, who also devised rules for its use as a number (Levy 
93). Because the idea of nothing was important in early Indian religion and 
philosophy, it was much more natural for them to adopt a symbol for it than it 
was for the Latin (Roman) and Greek systems (Knott, “Brief”). Thus, zero was 
used in India for addition, subtraction, and multiplication but not division; the 
concept of dividing something by “nothing” was too difficult for even the brilliant 
Brahmagupta (Levy 93).  

 Islamic mathematicians in Egypt, such as Abu Kamil (c. 850 – c. 930 CE), 
produced important but “only incremental progress” in the development of 
algebra, particularly of the use of the Golden Ratio (Sesiano). Such incremental 
advancement may not have been revolutionary, but it was necessary for the 
preparation of later mathematicians (like Fibonacci) to push forward the next 
major math breakthrough (Livio 91). 

 Suleimān the Merchant, a well-known Arab trader of the ninth century, may have 
introduced the Hindu-Arabic symbols (including the numeral zero) to European 
markets, and “Abū 'l-Ḥasan ‛Alī al-Mas‛ūdī (d. 956 CE) of Baghdad traveled to the 
China Sea on the east, as far south as Zanzibar, and to the Atlantic on the west; he 
speaks of the nine figures with which the Hindus reckoned (Smith and Karpinski). 
Thus, Islamic mathematicians may have learned the number zero from India but 
“failed to make use of it in algebra.” Hundreds of years later, Fibonacci did not 
consider zero a number like other numerals, either; instead, he referred to it as a 
symbol in his book Liber Abaci (Levy 93). 

Educated and (of course) fluent in Latin, Fibonacci studied al-
Khwarizmi’s compendium of rules for calculating Hindu-
Arabic arithmetic in a book which was later translated into 
Latin and given the title, Algoritmi de Numero Indorum 
(Concerning the Hindu Art of Reckoning) (Devlin, Man 24). First 

exposed to this book either in Bugia or perhaps while traveling 
the Mediterranean, it greatly influenced Fibonacci’s 

understanding and practice of the Hindu-Arabic 
arithmetic.  

 Although Kamil and al-Khwarizmi were accomplished 
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mathematicians in the Arabic world and some in Europe were aware of their 
arithmetic strategies, a commercial revolution did not emerge from Baghdad at 
that time because Western commercialism “had not yet developed sufficiently for 
the new methods to have widespread impact” (Devlin, Finding 32). 

 In fact, early in the twelfth century, other books explaining the Hindu art of 
reckoning were written but the new numerals were not enthusiastically embraced. 
Slowly, however, Italian merchants and bankers who initially opposed the 
unfamiliar numerals and the new calculation methods eventually understood its 
advantages over the traditional method of using Roman numerals. Transitioning 
to the new math, for example, eliminated the need of counting boards and other 
primitive means of commerce and banking. Among these was the primitive use of 
tally sticks; the money value of a loan was written upon a tally stick which was 
split in two. The lender kept the biggest piece - the stock - becoming the 
“stockholder”  (Seife 81).  

 Society was reluctant to adopt the Hindu-Arabic arithmetic system for many 
reasons, only a few of which will be mentioned here. Perhaps the most significant 
is the natural human aversion to change. Roman numerals had worked well 
enough with ancient counting devices and abaci for millennia; they had met the 
need for addition, subtraction, and multiplication. Moreover, little explanation 
was required to successfully operate an abacus (extensive practice was needed to 
truly excel in its use, however, especially when multiplying different orders of 
numbers) (Smith and Karpinski).  

 Another reason is that social discord between abacists (the advocates of the 
abacus) and algorists (those who favored the use of the Hindu-Arabic numerals) 
kept the newer, more efficient system from becoming universally adopted by 
European society for years. In fact, “merchants’ ledgers featured Roman numerals 
throughout the Middle Ages, indicating that [some] remained staunchly 
abaci” (Levy 117).  

 Newly-established universities were sometimes antagonistic toward algorism but 
a more powerful impediment to the dissemination of the Hindu-Arabic math 
method was civil authority. At the end of the 13th century, the use of new 
numbers was forbidden by local governments in several Italian cities. Florence in 
1299, for example, passed statutes forbidding moneychangers’ guilds (bankers) 
from using Arabic numerals (Levy 117). Similarly, the statutes of the University of 
Padua required stationers to keep the price lists of books "non per cifras, sed per 
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literas claros" (loosely translated, “not in numbers but clearly in letters”) (Smith 
and Karpinski). This was in large part because written numbers could be easily 
changed or forged; a simple flourish of a pen could transform a zero into a 6 or a 
9, for instance. Roman numerals were not so easily altered; 10 is represented by 
the letter X, for example. Bankers recorded money orders in words, therefore, 
which is a practice we still utilize when writing checks today (Ghusayni 84). 

 Fibonacci recognized the advantages of zero and the other Arabic numerals; he 
knew that the benefits far outweighed the hazards. Italian merchants who agreed 
with him continued to use them, too, even when forbidden (Seife 81). In addition, 
the spread of a cashless trade society (through the issuing of bills of exchange and 
checks), and the growth of interest calculation compelled banks to quite 
pragmatically accept the new method of calculation pushed by Fibonacci. In the 
end, governments relented to commercial pressure and the Arabic notation 
flourished in Italy and soon spread throughout Europe (Seife 81). 

 C O N T E S A  D I  M A T E M A T I C A :  A B A C I S T S  V S .  
A L G O R I S T S  

 The abacists (sometimes spelled abakists) were people who preferred to use the 
traditional Roman numerals and mechanical tools (abaci, boards, or checker-
patterned cloths) to perform arithmetic, and algorists were people who embraced 
the written, symbolic Hindu-Arabic notation of place-value (including the zero) 
and calculated using algorithmic methods or formulas (Levy 112). Most algorists 
renounced the use of the abacus. 

 An illustration in philosopher Gregor Reisch’s book, Margarita Philosophica (Pearl of 
Wisdom) (1503) portrays the struggle between traditional and modern methods of 
arithmetic. The woodcut engraving, titled “The Allegory of Arithmetic,” depicts a 
competition of sorts between those who favored Roman numeration and clung to 
tradition (use of the abacus) and those who had adopted the algorithmic method 
and calculated on pen and paper. Banners labeled “Boetius” and “Pythagoras” 
identify the men in the picture. The ancient Greek scholar Pythagoras (c. 500 
BCE) is shown on the right in the illustration with a worried frown, using a 
counting board; he represents abakists. On the left, Roman philosopher Boethius 
(c. 500 CE) appears to be happy as he uses Indian-Arabic numerals, representing 
algorists (“Fibonacci” Famous; “Dispute”). 
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Classic woodcut of Arithmetica (or the Allegory of Arithmetic) supervising a contest between Boëthius, 
representing written calculation using Hindu-Arabic numbers, and Pythagoras, represented as using a 
counting board.



 Of course, neither of these men were alive during Reisch’s lifetime (1467 – 1525 
CE); in fact, roughly 1000 years had passed between the lifetimes of the two 
ancient philosophers and another 1000 years had passed between Reisch and 
Boethius! The woodcut picture is anachronistic, belonging to a time other than 
that which it portrays, and the characters in the scene are symbols, representing 
ideas. One could say the woodcut is a kind of medieval infographic.  

 Between the two mathematic opponents hovers the muse of arithmetic, 
Arithmetica, wearing a dress adorned with the Arabic numerals. Her dress 
decoration and her favorable look upon the figure of Boethius suggest that, by the 
end of the fourteenth century, algorismi was becoming increasingly more popular 
(O’Shea; O’Connor and Robertson). Sometime between 1400 and 1700, it 
ultimately prevailed. 

 The adoption of the new math by European economic systems was sluggish to say 
the least; if it were depicted in a woodcut in Reisch’s book it might be a hobbling 
tortoise, while the spread of the Hindu-Arabic numerals in academic circles would 
be a sprinting hare. Fibonacci championed the Hindu-Arabic numeral system of 
al-Khwarizmi and Kamil in Liber Abaci, which is now regarded as “the seminal 
work in transmitting to the West the Hindu-Arabic numerals and how to add, 
subtract, multiply, and divide with them.” Even more influential than the 
encyclopedic Liber Abaci was his smaller, more accessible digest, the Libro di Minor 
Guise (Book in a Smaller Manner), which circulated widely among merchants and was 
copied countless times by motivated traders, merchants, and bankers (Levy 117).  

 Despite Fibonacci showing how useful Arabic numerals were for performing 
complex calculations, the printing press had not yet been invented; so, knowledge 
spread slowly, for the most part, during the Middle Ages. "Popes and princes and 
even great religious institutions possessed far fewer books than many farmers of 
the present age” (Smith and Karpinski). Nevertheless, as with most innovations 
and strategies that make profitability more efficient, the practical applications in 
Fibonacci’s books could not help but spread like a wildfire in the tinderbox of the 
market economy which had developed in the Western world. 

 Some historians have asserted that treatises on algorism by others, such as the 
Carmen de Algorismo by Alexander de Villa Dei (c. 1240 CE) and the Algorismus 
Vulgaris by John of Halifax (Sacrobosco, c. 1250 CE) were much more influential 
and more widely used than Fibonacci’s and “doubtless contributed more to the 
spread of the numerals among the common people” (Smith and Karpinski; 
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“Transition”). However, more recent research has unearthed hundreds of 
manuscripts called libri d’abbaco (“abbacus books”) or trattati d’abbaco (“abbacus 
tracts”) which clearly point to Leonardo’s Liber Abaci as the “gunshot” or “spark 
that lit the fire of the modern commercial world” in the late Middle Ages “because 
it was a highly combustible landscape,” already experiencing rapid commercial 
expansion (Devlin Finding 25, 27, 33).   

 It may now seem inconceivable that the Western world balked at adopting the 
new numerals embraced so “stringently” by Leonardo Pisano; they were so 
obviously superior to calculation methods then prevalent in Christian Europe! In 
twenty-first century terms, Fibonacci’s Liber Abaci was a new market instrument of 
disruption because it fit an emerging market segment (international trade) that 
was underserved by existing tools (Roman numerals and the abacus) in the 
industry. 

 Initially, and certainly while he was alive, Fibonacci’s works were intensively 
studied and appreciated in Italy. Copies of the practical “economic” portions of the 
book were handwritten and distributed by the thousands, presumably not only by 
merchants and traders but also by students attending the many Italian vernacular 
schools which suddenly appeared in the second half of the thirteenth century. 
Commercial mathematics (abbaco) and complex bookkeeping skills were taught in 
these schools, in addition to literature. Thus, Liber Abaci significantly influenced 
not only the great numbers of arithmetic tracts (trattati d'abaco) which were 
published after Liber Abaci, but also the abbaco schools which flourished in the 
14th century (“Education).   

 B A S I C S  O F  T H E  F I B O N A C C I  S E Q U E N C E :  W H A T  
A R E  F I B O N A C C I  N U M B E R S ?  

 The sheer magnitude of the size of Liber Abaci rendered it nearly impossible 
(certainly impractical) to duplicate in its entirety. The English version of Liber 
Abaci (a translation begun by American Laurence Sigler and posthumously 
completed by his wife, Joan), “has more than 600 pages, set in a fairly small 
typeface; examples are what occupy most of the pages” (Devlin, Finding 88). The 
book began with explanations and illustrations of how to write and manipulate 
the Hindu-Arabic numbers, then Fibonacci proceeded to provide the basic 
mechanics of Hindu-Arabic arithmetic, which he “explain[ed] using (many) 
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specific numerical examples, much like the way elementary school pupils are 
taught today (Devlin, Finding 116). In succeeding chapters, he supplied real-world 
examples and demonstrated valuable methods for solving problems specifically 
relevant to business and companies. The mammoth twelfth chapter contained 259 
worked examples (in Sigler’s translation, the chapter fills 187 printed pages) 
(Devlin, Finding 119). 

 Fibonacci introduced Arabic numerals in Liber Abaci with the simple statement: 
“The nine Indian figures are: 9 8 7 6 5 4 3 2 1.” He then asserted that, with these 
nine figures, and with the sign 0 ... any number may be written (Horadam). 

 Leonardo reckoned that most people would have little interest in theoretical, 
abstract problems; they would be interested in practical applications. Therefore, 
Leonardo “looked for ways to dress up the abstractions in familiar, everyday 
clothing.” He used “recreational mathematics” to introduce both Arabic numerals 
and the Hindu-Arabic place-valued decimal system to Europe (Devlin, Man 69; 
O’Connor and Robertson). 

 Since he had traveled widely and knew that “many of his fellow citizens were 
frequent travelers,” Leonardo believed that money problems about traveling were 
sure to attract wide interest, so these make up his next set of examples. For his 
first traveler problem, he wrote:  

 A certain man proceeding to Luca on business to make a profit doubled his money, and he spent 
there 12 denari. He then left and went through Florence; he there doubled his money, and he 
spent 12 denari. Then he returned to Pisa, doubled his money, and spent 12 denari, and it is 
proposed that he had nothing left in the end. It is sought how much he had at the 
beginning” (Devlin, Finding 124).  

 Other topics addressed by Leonardo in Liber Abaci are: multiplication and addition; 
subtraction; division; fractions; practical tasks and rules for trade and money; 
accounting; quadratic and cube roots; quadratic equations; binomials; proportion; 
rules of algebra; checking calculations by casting out nines; progressions; and 
applied algebra (“Biography”).  

 Found on pages 123-4 of the surviving second edition of 1228 was “a theoretical 
family of ‘abracadabric’ rabbits conjured up in the mind” of the young, brilliant 
mathematician (Lines 6, 19). This problem leads to the introduction of the 
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Fibonacci numbers and the Fibonacci sequence for which Leonardo is best 
remembered today. He presented the following puzzle (paraphrased): 

 A certain man put a pair of newly-born rabbits, one male, one female, into a garden 
surrounded by a wall. Rabbits are able to mate at the age of one month so that at the end of its 
second month a female can produce another pair of rabbits. How many pairs of rabbits can be 
produced from that pair in a year if the rabbits never die and if every month each pair begets a 
new pair which from the second month on becomes productive? 

 He then explained: “Because the above pair gives birth in the first month, you can double it 
so that after one month there are two pairs. Of these, one, that is, the first, gives birth in the 
second month; and so there are three pairs in the second month. Two of them become pregnant 
again in one month, so that in the third month two pairs of rabbits are born; and so it will be 
five pairs this month. Of those, three become pregnant in the same month, so there are eight 
pairs in the fourth month. Of these, five couples bear five pairs again; if you add them to the 
eight pairs, there are thirteen pairs in the fifth month. 

 Of those, the five couples born this month do not mate in the same month, but the other eight 
couples become pregnant; and so in the sixth month there are twenty-one pairs. If you add to 
these the thirteen couples who are born in the seventh month, there will be thirty-four couples 
this month. If you add to these the twenty-one pairs born in the eighth month, there will be 
fifty-five pairs this month. If you add to these the thirty-four pairs born in the ninth month, 
there will be eighty-nine pairs this month. Add to this the fifty-five pairs born in the tenth 
month and this month will be 144 pairs. 

 Adding to these the eighty-nine pairs born in the eleventh month will be 233 pairs this month. 
And if you finally add to these the 144 pairs that were born last month, there are 377 pairs at 
the end. And so many couples will have given birth to the above-mentioned couple at the place 
described at the end of a year" (“The Rabbit”). 

 We assume: 1. That a pair of rabbits has a pair of children every year. 2. These 
children are too young to have children of their own until two years later. 3. 
Rabbits never die. 

 Eppstein observes that the last assumption is unrealistic but makes the problem 
simpler: “After we have analyzed the simpler version, we could go back and add an 
assumption e.g. that rabbits die in ten years, but it wouldn't change the overall 
behavior of the problem very much.” 
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 We then express the number of pairs of rabbits as a function of time (measured as 
a number of years since the start of the experiment) (Eppstein): 

 F(1) = 1 -- we start with one pair 

 F(2) = 1 -- they're too young to have children the first year 

 F(3) = 2 -- in the second year, they have a pair of children 

 F(4) = 3 -- in the third year, they have another pair 

 F(5) = 5 -- we get the first set of grandchildren 

 The problem yields the ‘Fibonacci sequence’: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . 

  

 Fibonacci omitted the first term (1) in Liber Abaci. The recurrence formula for 
these numbers is: F(0) = 0 F(1) = 1 F(n) = F(n − 1) + F(n − 2) n > 1 .                                                                  
Although Fibonacci only gave the sequence, he obviously knew                                                            
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that the nth number of his sequence was the sum of the two                                                                
previous numbers (Scotta and Marketos). “This sequence, in which each number 
is the sum of the two preceding numbers, appears in many different areas of 
mathematics and science” (O’Connor and Robertson).  

 Fibonacci probably did not invent the rabbit problem but rather included one he 
had learned himself from the Moors or while traveling (Knott). He may have even 
relied on “translations of the works of Al-Khwˆarizmˆı by Gerard of Cremona 
(1114-1187 CE), the latter being a pioneer in a major effort based in Toledo, 
Spain, to translate works written in Arabic into Latin for (Christian) 
Europe” (Scotta and Marketos). The sequence F(n)  was already known and 
discussed by Indian mathematicians “who had long been interested in rhythmic 
patterns that are formed from one-beat and two-beat notes. The number of such 
rhythms having  n  beats altogether is  F(n+1). Therefore both Gospala (before 
1135) and Hemachandra (c. 1150) mentioned the numbers 1, 2, 3, 5, 8, 13, 21, ... 
explicitly.  

 “Fibonacci himself does not seem to have associated that much importance to 
them; the rabbit problem seemed to be a minor exercise within his work” (Scotta 
and Marketos). It wasn’t until the 19th century that the sequence assumed “major 
importance and recognition thanks to the work of the French mathematician 
Edouard Lucas.” Since then, mathematics historians have wondered about the 
true inspiration behind these numbers and whether Fibonacci was fully aware of 
their significance (Scotta and Marketos). Though Fibonacci covered a multitude of 
mathematical topics, he is best known for this number sequence which was later 
named after him by Guillaume Libri in 1838 and is still to this day being actively 
researched (“The Rabbit Problem”). 

 While the “Rabbit Problem” is interesting and is the one for which he is most 
famous today, it is by no means the only significant mathematical problem 
presented in Liber Abaci. For example, borrowing a scenario from a ninth-century 
book, Ganita Sara Sangraha, by Mahavira (c. 800-870), Fibonacci presented a series 
of “purse problems” for the benefit of those who may want to divide money 
between two or more people. In everyday terms, he clarified the  rules to follow 
for equal and fair distribution of something (such as money). The first solution to 
the “purse problem” filled half a parchment page and then he provided many more 
complicated variations of the same problem along with their solutions, including 
how to distribute the same quantity of money in a purse found by three men 
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rather than two, a purse found by four men, and finally a purse found by five men. 
Pages later, Fibonacci had included solutions to eighteen different purse problems, 
each with a “unique twist and each using slightly different numbers.” (Devlin, 
Finding 121). 

 F I B O N A C C I ’ S  M A T H E M A T I C A L  C O N T R I B U T I O N S  

 First: Numbers  

 The place-value system of numeral writing is far easier to work with than the 
letter-based Roman numeral system; the position of a numeral determines its 
magnitude in relation to other digits in the number (for example, the 1 in 19, 
being the second digit in the “tens” place, signifies a value ten times its nominal 
value or 10 x 1). Fibonacci showed traders and merchants how to use the place-
value system of arithmetic. 

 Second: Digits and Decimals 

 For centuries Europe used the Roman numeral system in which seven symbols 
represented seven distinct values; the Roman number 2018 could be written as 
MMXVIII or IIIXVMM  - the letter order does not matter since the values of the 
letters are added to make the number. 

 I = 1 V= 5 X = 10 L = 50 C = 100 D = 500 M = 1000 

 In the Hindu-Arabic system, the order of the numerals always matters because the 
position of each digit determines its value; the number 2018 is quite different 
from 8102. Fibonacci compelled commercial use of the Arabic symbols - 1, 2, 3, 4, 
5, 6, 7, 8, 9 - which had been known in Europe but had not been implemented in 
everyday practice; most importantly, this numeric system included a symbol for 
zero. Zero is needed as a place-holder because it ensures digits are placed into 
their proper places (columns); e.g. 2009 has no tens and no hundreds. The Roman 
system would have written 2009 as MMIX, omitting the values not used. Roman 
arithmetic was not easy; for example, MXVII added to LI is MLVIII and XLI less IV 
is XXXVII (Knott, “Brief”). 

 In Liber Abaci (1228), Fibonacci acknowledged studying algorism extensively while 
traveling on business; back home in Italy, he passionately taught the rules of 
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arithmetic he had learned from Arab mathematicians and provided the first 
systematic representation of the decimal system in Europe (Knott, “Brief”). 

 Fibonacci and Algebra  

 While demonstrating his mathematical ability during a presentation to Emperor 
Frederick’s Pisan court in 1225, Fibonacci explained how he would solve the 
following Diophantine algebraic problem: Solve x3 + 2x2 + 10x = 20. Recognizing 
that Euclid's method of solving equations by square roots would not work, 
Fibonacci used “an original method of his own, giving his answer in (Babylonian) 
sexagesimal notation. His approximation was far more accurate than those of his 
Arab contemporaries” and astounded the audience (Horadam). Soon after this 
occasion, Fibonacci wrote another brief treatise, Flos (1225) (The Flower, an 
inexplicable name since it has nothing perceivably to do with flowering plants), 
explaining how he had arrived at his solution to this algebra problem and another.  

 Before he wrote Flos, Fibonacci published a treatise containing solutions to 
algebraic equations, Epistola ad Magistrum Theodorum, and the book which 
mathematicians today consider his most important work: Liber Quadratorum, the 
Book of Squares (1225), a book of number theory which he dedicated to the 
emperor. In this book, he described the properties of the squares (such as sums of 
two, three or four-square numbers, or squared fractions) and tasks that lead to 
quadratic equations (McClenon). What makes Fibonacci’s achievements even 
more impressive is the fact that he did not use algebraic notation as we do today 
because he had no such algebraic symbolism to help him. Instead, he represented 
numbers geometrically as line-segments, just as Euclid did. Still, his descriptions 
of processes and algorithms were surprisingly clear. For example, he used phrases 
such as res (thing) for the unknown x, and for x2 he wrote quadratus numerus 
(square number). The following problem is representative of the type of 
calculation he solved and explained in a way that was superior to almost all other 
math textbook writers before him: “Find a square number from which, when five 
is added or subtracted, there always arises a square number.” As Horadam states, 
“It is truly remarkable how far he could progress with this limited mathematical 
equipment. His achievements in this book justly confirm him as the greatest 
exponent of number theory, particularly in indeterminate analysis, in the Middle 
Ages” (Horadam, Book). 
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 Fibonacci and Geometry 

 Besides the fact that rabbits produce at a “geometrical rate” (as do the numerical 
values of the digits in the Fibonacci sequence), there is a strange and wonderful 
relationship not easily seen at first glance between geometry (which deals with 
properties, measurement, and relationships of points, lines, angles, and figures in 
space)  and the Fibonacci sequence, which is derived from algebra (in which 
symbols such as letters and numbers are combined according to the rules of 
arithmetic) (Scotta and Marketos). 

 Admittedly applying his knowledge of the theories and applications that he had 
learned in the “niceties of Euclid’s geometric art,” the medieval Italian 
mathematician “rediscovered” the arithmetic series (Gascueña). When a number 
in Fibonacci's series, (1, 1, 2, 3, 5, 8, 13, ...) is divided by the number preceding it, 
the quotients become the following series of numbers: 

 1/1 = 1,   2/1 = 2,   3/2 = 1.5,   5/3 = 1.666...,   8/5 = 1.6,   13/8 = 1.625,   
21/13 = 1.61538... 

 The ratios approach the particular value called the “Golden Ratio” or the “Golden 
Number.” It has a value of approximately 1.618034 and is represented by the 
Greek letter Phi (Φ, φ) (Scotta and Marketos). 

 German mathematician, astronomer, and astrologer Johannes Kepler (1571-1630 
CE), (best known today for developing laws of planetary motion) noticed this 
pattern, in which the ratio of consecutive Fibonacci numbers approaches the 
Golden or Divine Ratio (Scotta and Marketos). 

 What is even more fascinating about this number, 1.618 …, is the fact that it also 
expresses a unique relationship between two specific segments of a straight line, 
first defined by Euclid.   

 One of Euclid’s strategies in Elements was to develop results (called propositions) 
about geometry which were proved solely by using logic based purely on axioms 
and previously-proved propositions. He showed how to divide a line in mean and 
extreme ratio in Book 6, Proposition 30. Euclid used this phrase to mean the ratio 
of the smaller part of a line (CB), to the larger part (AC): CB/AC. This ratio is the 
SAME as the ratio of the larger part, AC, to the whole line AB (i.e. is the same as 
the ratio AC/AB). Therefore, CB/AC = AC/AB. The resulting quotient is 1.618 or 
Phi, a geometric construction (concerning the properties of figures) (Gascueña). 
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 Thus, ratios derived from the division of successive Fibonacci’s numbers (from 
F(8) on) are the same number derived from dividing particular proportions of a 
straight line! (Livio 103).   

  

 While Liber Abaci contained some geometry problems, Practica Geometriae (The 
Practice of Geometry) (1223) demonstrates the mathematical brilliance of Fibonacci, 
for it was a well-written book containing several chapters covering basic concepts 
of Euclidean geometry theorems with substantial, rigorous proofs that were more 
advanced than the geometry of others preceding him, like Boethius and Gerbert 
(Pope Sylvester II). More importantly, this large book contained many practice 
problems dealing with area and volume formulas for plane figures and bodies 
(Horadam, “Eight”). The solutions and explanations, however, were not written in 
an esoteric language. Rather, he supplied original and instructive explanations 
which were widely accessible, written in the vernacular language most useful to 
fellow citizens; he presented solutions to problems that men in common trades 
(such as surveyors) were able to use to make their labor more productive and 
profitable. Repeatedly, Fibonacci proved to be socially relevant, which is why his 
achievements were clearly recognized by his contemporaries and why he is 
considered by modern math historians to have been a genius who was able to “see 
the greatness in the commonplace, and to recognize the enormous potential to 
change the world in what seems to most people to be a mundane or obscure 
idea” (Devlin, Finding 21).  

 F I B O N A C C I  A N D  T H E  G O L D E N  R A T I O  

 Euclid’s ancient ratio had been described by many names over the centuries but 
was first termed “the Golden Ratio” in the nineteenth century. It is not evident 
that Fibonacci made any connection between this ratio and the sequence of 
numbers that he found in the rabbit problem (“Euclid”). It was not until the late 
seventeenth century that the relationship between Fibonacci numbers and the 
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Golden Ratio was proven (and even then, not fully) by the Scottish mathematician 
Robert Simson (1687-1768) (Livio 101).   

 The Greek letter tau (Ττ) represented the Golden Ratio in mathematics for 
hundreds of years but recently (early in the 20th century) the ratio was given the 
symbol phi (Φ) by American mathematician Mark Barr, who chose the first Greek 
letter in the name of the great sculptor Phidias (c. 490-430 BCE) because he was 
believed to have used the Golden Ratio in his sculptures and in the design of the 
Parthenon (Donnegan; Livio 5). [The verity of these and other claims (such as 
that the Golden Ratio is found in paintings, Egypt’s pyramids, and measurements 
of proportions in the human body) is addressed in “Fibonacci in Art and Music.”] 

 German mathematician Martin Ohm (brother of physicist Georg Simon Ohm, 
after whom Ohm's Law is named) first used the term “Golden Section” to describe 
this ratio in the second edition of his book, Die Reine Elementar-Mathematik (The 
Pure Elementary Mathematics) (1835). He wrote: “One also customarily calls this 
division of an arbitrary line in two such parts the ‘Golden Section.’” He did not 
invent the term, however, for he said, “customarily calls,” indicating that the term 
was a commonly accepted one which he himself used (Livio 6).  

 The Golden Section number for phi (φ) is 0.61803 39887..., which correlates to 
the ratio calculated when one divides a number in the Fibonacci series by its 
successive number, e.g. 34/55, and is also the number obtained when dividing the 
extreme portion of a line to the whole. This number is the inverse of 1.61803 
39887... or Phi (Φ), which is the ratio calculated when one divides a number in 
the Fibonacci series by the number preceding it, as when one divides 55/34, and 
when the whole line is divided by the largest section. The Golden Ratio formula 
is: F(n) = (x^n - (1-x)^n)/(x - (1-x)) where x = (1+sqrt 5)/2 ~ 1.618  

  

 Another way to write the equation is:   

  

 Therefore, phi = 0.618 and 1/Phi. The powers of phi are the negative powers of 
Phi. One of the reasons why the Fibonacci sequence has fascinated people over 
the centuries is because of this tendency for the ratios of the numbers in the 
series to fall upon either phi or Phi [after F(8)]. Others have debated whether 
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there might exist a supernatural explanation for what seems an improbable 
mathematical coincidence.  

 The limits of the squares of successive Fibonacci numbers create a spiral known as 
the Fibonacci spiral; it follows turns by a constant angle that is very close to the 
Golden Ratio. As a result, it is often called the golden spiral (Levy 121). 

  

 A  true Golden spiral is formed by a series of identically proportioned Golden 
Rectangles, so it is not exactly the same as the Fibonacci spiral, but it is very 
similar. As the Fibonacci spiral increases in size, it approaches the angle of a 
Golden Spiral because the ratio of each number in the Fibonacci series to the one 
before it converges on Phi, 1.618, as the series progresses (Meisner, “Spirals”). 

 Many natural phenomenon (e.g. rotations of hurricanes and the spiral arms of 
galaxies) and objects in nature appear to exist in the shape of golden spirals; for 
example, the shell of the chambered nautilus (Nautilus pompilius) and the 
arrangement of seeds in a sunflower head are obviously arranged in a spiral, as are 
the cone scales of pinecones (Knott, “Brief;” Livio 8).  

 Fibonacci spirals, Golden Spirals, and Golden Ratio-based spirals often appear in 
living organisms. However, not every spiral in nature is related to Fibonacci 
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numbers or Phi; some of these spirals are equiangular spirals rather than 
Fibonacci or Golden Spirals. An Equiangular spiral has unique mathematical 
properties in which the size of the spiral increases, but the object retains its curve 
shape with each successive rotation. Fibonacci numbers appear most commonly in 
nature in the numbers and arrangements of leaves around the stems of plants, and 
in the positioning of leaves, sections, and seeds of flowers and other plants 
(Meisner, “Spirals”). 

 Many observers find the patterns of Fibonacci spirals and Golden Spirals to be 
aesthetically pleasing, more so than other patterns. Therefore, some historians 
and students of math assign exceptional value to those objects and activities in 
nature which seem to follow Fibonacci patterns. 

  

 O T H E R  M A T H  A P P L I C A T I O N S  

 Fibonacci and Fractal Structures: Possibilities 

 Computer design specialists use algorithms to generate fractals which can produce 
complex visual patterns for computer-generated imagery (CGI) applications. 
Researchers in the Plasma Physics Research Center, Science and Research Branch, 
at Islamic Azad University, (Tehran, Iran) have created three variations of special 
fractal structures, Fibonacci fractal photonic crystals, which “could be used to 
develop resonant microcavities with high Q factor that can be applicable in [the] 
design and construction of ultrasensitive optical sensors.” Possible commercial 
use of these structures include the production of complex visual patterns for 
computer-generated imagery (CGI) applications in fractal Personal Computers. 
Gaming enthusiasts will certainly welcome such advances in PC construction 
(Tayakoli and Jalili).  

 Fibonacci and the Physical Sciences 

 Kepler and others have observed Phi and Fibonacci sequence relationships 
between objects in the solar system and today there are websites whose curators 
offer propositions of their own about whether or why there are Phi relationships 
between the principles governing interplanetary and interstellar interactions, 
gravitational fields, electromagnetic fields, and many other celestial movements 
and forces. For example, some conclude that the Phi-related “feedback” in 
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perturbations between the planets and the sun has the purpose of arranging the 
“planets into an order which minimizes work done, enhances stability and 
maximizes entropy” (TallBloke). 

 In another Fibonacci connection, neutrino physicists John Learned and William 
Ditto from the University of Hawaii, Mānoa, realized that frequencies driving the 
pulsations of a bluish-white star 16,000 light-years away (KIC 5520878) were in 
the pattern of the irrational “Golden Number” (Wolchover).  

 Atomic physicist Dr. Rajalakshmi Heyrovska has discovered through extensive 
research that a Phi relationship exists between the anionic to cationic radii of 
electrons and protons of atoms, and many other scientists have seen Phi 
relationships in geology, chemical structures and quasicrystalline patterns (“Phi;” 
TallBloke). The fact that such astronomically diverse systems as atoms, plants, 
hurricanes, and planets all share a relationship to Phi invites some to believe that 
there exists a special mathematical order of the universe.  

 G E O M E T R I C  C O N S T R U C T I O N S  I N V O LV I N G  P H I  

 Rectangles with sides the lengths of Fibonacci numbers maintain a constant ratio 
(dividing the long side by the short side) no matter how large the rectangle is. 
Rectangles made with the Golden Ratio are called “Golden Rectangles” because 
many people believe them to have the most aesthetically pleasing proportions. A 
rectangle with sides of  8 × 5, for example, has a ratio of 1.6. 
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 Golden Rectangles can be “cloned” by partitioning a square of side length equal to 
the length of the short side of the rectangle (Seewald), as shown previously in the 
image of The Golden Spiral.  

 Another geometric variation is the golden triangle, also known as the sublime 
triangle, which is an isosceles triangle in which the ratio of a side to the base is 
Phi. 

 

  

 In a golden triangle, a base angle of 72° can be bisected to create two additional, 
self-similar triangles (the internal angles and the ratios between the sides are 
identical no matter the length of the sides).  
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 The result is an acute isosceles triangle of the same dimensions as the original, 
and an obtuse isosceles triangle in which the length of the equal (shorter) sides to 
the length of the third side creates a ratio that is the reciprocal of the Golden 
Ratio. This obtuse isosceles triangle is known as a “gnomon.” 

 Pentagons, pentagrams, and decagons can be generated this way, as well 
(Seewald).       

  

 Scientists and mathematicians have studied these logarithmic spirals (named for 
the way the radius of the spiral grows when moving around it in a clockwise 
direction) because they recognize the patterns in objects of biology and nature, 
from animals and plants to vast galaxies (Seewald). They seem evident in the 
harmony and proportion of art and architecture, as well. The golden spiral has 
been utilized in the design of some modern art and architecture, but whether 
ancient artists and architects (such as Phidias, architect of the Parthenon) 
deliberately incorporated the Golden Ratio is still being debated.   

 F I B O N A C C I  A N D  T H E  F U T U R E   

 Interest in the Fibonacci family of numbers has only increased in the centuries 
since Leonardo Pisano was “rediscovered.” Widespread interest among scientists, 
mathematicians, technical chartists, artists, musicians and curious intellectuals 
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seems to geometrically intensify year after year (much like the number sequence, 
itself!). One reason for this popularity is the surprising frequency with which 
objects in nature (plants, insects, flowers) and biology repeat the patterns of the 
Fibonacci sequence (Lines 8).  

 The Fibonacci Association Foundation, based in San José, California, began in 
1963 to produce the Fibonacci Quarterly, a journal devoted to the study of 
integers with special properties. The journal features current research in modern 
applications and extensions of Fibonacci’s ideas. The foundation also hosts a 
yearly international conference (last held in July 2018 at Dalhousie University in 
Halifax, Nova Scotia, Canada), the purpose of which is “to bring together people 
from all branches of mathematics and science with interests in recurrence 
sequences, their applications and generalizations, and other special number 
sequences” (Horadam, “Eight”). 

 5 2



 

 
PA RT  I I I  

  

 5 3



 I I I .  F I B O N A C C I  I N  A RT  &  M U S I C  

ibonacci believed that calculation was an art form; to him, it was 
a “marvelous” thing of beauty. He considered the art of 
calculation with Hindu-Arabic numerals to be appealing because 
their use facilitates the creation of harmonious, orderly, 
proportionate dimensions. To a businessman like Fibonacci, 
order was beautiful. His proclivities were not uncommon either 

in his day or in ours. Modern neuroscientific research supports the ancient 
assumption that humans favor the aesthetic appeal of order and symmetry. 
Evidence suggests that “humans can detect symmetry within about 0.05 of a 
second. This stimulus duration is too brief for eye movements to be completed.” 
Architect Don Ruggles, in his book titled Beauty, Neuroscience & Architecture, Timeless 
Patterns and Their Impact on Our Well Being, concludes, “this implies that human 
symmetry processing is a global, hard-wired activity of the brain” (Miller). The 
desire for harmony - one of the most ancient and primal aesthetic cravings - still 
exists; Fibonacci’s sequence helps people objectify the subjective components of 
beauty (“As Easy”). 

 Objective beauty can be more complex than bilateral symmetry or mirroring; 
special number sequencing and ratios are evident in diverse applications, such as 
literary texts (Euclid's Elements and Shakespearean sonnets) and architecture (the 
Parthenon and the Taj Mahal), botany (red rose) and sculpture (Polycleitus’ 
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Doryphoros). The classic opinion is that beauty exists when integral parts are 
arranged into a coherent whole exhibiting proportion, harmony, symmetry, unity, 
and order. Aristotle believed the mathematical sciences uniquely demonstrate the 
chief forms of beauty, which are order, proportionality, symmetry, and definitude 
(size limitation) (Metaphysics vol. 2, 1705 [1078a36]) (Stakhov 40). More 
precisely, he proposes that “a living creature, and every whole made up of parts, 
must … present a certain order in its arrangement of parts” to be considered 
beautiful (Poetics, vol. 2, 2322 [1450b34]) (Sartwell).  

 Aristotle’s mentor, the Greek philosopher, Plato (427-347 BC), proposed a 
tripartite theory of soul harmony (Republic, c. 380 BCE), which “recognized that 
the highest beauty of perfect figures and proportions was based upon the principle 
of the division in extreme and mean ratio” (the Golden Section). This ancient 
Harmony theory greatly influenced the development of science and art in 
European culture (Stakhov 41).  

 For example, Roman architect and military engineer Marcus Vitruvius Pollio, 
better known simply as Vitruvius, wrote a treatise on the history of ancient 
architecture and engineering which also emphasized the importance of structural 
harmony (De Architectura, On Architecture, c. 20 BCE). Because the book is the only 
such work to survive intact from antiquity, it is an invaluable resource on Greek 
and Roman architecture, but also on a wide range of other topics such as “science, 
mathematics, geometry, astronomy, astrology, medicine, meteorology, philosophy, 
and the importance of the effects of architecture, both aesthetic and practical, on 
the everyday life of citizens” (Cartwright). Importantly, Vitruvius characterized 
architecture as embodying beauty in its complexity constrained by underlying 
unity. Architecture, he said, consists of order (Greek: taxis), arrangement (Greek: 
diathesis), proportion, symmetry, décor, and distribution (Greek: oeconomia, 
economy) (Sartwell). 

 Astronomer Johannes Kepler (1571-1630) expressed a similar opinion, asserting 
that “the chief aim of all investigations of the external world should be to discover 
the rational order and harmony which has been imposed on it by God and which 
He revealed to us in the language of mathematics” (Stakhov 42). As mathematical 
instruments of investigation, the Fibonacci sequence and the Golden Ratio have 
been used often to measure the order and harmony of some classical oggetti d'arte e 
musica (objects  of art and music). Since antiquity, objects having measurable 
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harmonious and symmetrical proportions relative to the Golden Ratio have been 
considered especially appealing, graceful, and beautiful. 

 According to Pythagoras, the most beautiful and pleasing proportion is created 
when a line is divided so that the ratio between the larger and smaller of the two 
parts is identical to that between the original line and the larger of its 
subdivisions, alternately called the Golden Mean or the Golden Ratio (“As Easy”) 
or the Golden Section. 

 

 The properties of the Golden Section can be appropriated in temporal as well as 
spatial patterns of mathematical series and geometrical patterns (Akhtaruzzaman 
and Shafie). A wide survey of the relationship between Fibonacci numbers and the 
spheres of art and music reveals that some of the world’s most outstanding 
artistic works incorporate design based upon the Fibonacci sequence and/or the 
Golden Ratio. Besides the beautiful objects mentioned previously, these include 
Khufu’s Great Pyramid of Cheops at Giza, the sculptural Bust of Nefertiti crafted 
by Tuthmose, the majority of Greek sculptural monuments, the magnificent Mona 
Lisa by Leonardo da Vinci, The School of Athens and other works by Raphael, 
paintings by Shishkin and Konstantin Vasiliev, Chopin’s etudes, the musical works 
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of composers Beethoven, Tchaikovsky, Debussy and Béla Bartók, and the Моdulor 
of Corbusier (Stakhov 59, Sinha).  

 F I B O N A C C I  I N  A R T  A N D  A R C H I T E C T U R E  

 As previously explained, the numbers generated by Leonardo of Pisa’s “rabbit 
problem” in Chapter 12 of Liber Abaci comprise a sequence that is astonishingly 
connected to the Golden Ratio. Ratios of successive numbers in the Fibonacci 
sequence (wherein each subsequent number is the sum of the previous two) 
become rational approximations of the Golden Mean ϕ with ever increasing 
accuracy. The greater the magnitude of the numbers, the more a graph of their 
development produces the Golden Ratio (Posamentier and Lehmann; “As Easy”). 
Therefore, Fibonacci numbers are used as dimensions in construction or design to 
“circumvent the difficulty of using the irrational number (φ)” (Posamentier and 
Lehmann 232). 

 The “modern cult of Fibonacci's numbers dates from 1877” when the French 
mathematician Edouard Lucas saw their significance and assigned them the name 
“Fibonacci sequence” (“As Easy”). Modern artists and architects are fascinated by 
the Fibonacci sequence, but “this is as nothing” compared to the “obsession with 
the Golden Ratio” in past centuries. The Golden Ratio was applied, most 
famously, by the architects of the Parthenon, but also by every Renaissance 
engineer who tried to “rediscover the lost harmony of Pythagoras” in every 
classical edifice emulating Phidias’ magnum opus (“As Easy”). 

 For example, evidence suggests that builders of Gothic castles used bricks formed 
in a special kind of rectangular parallelepiped shape which was based upon the 
Golden Rectangle; these were called Golden Bricks. There is speculation that the 
surprising strength and durability of gothic style architectural monuments is 
attributable to the use of the Golden Bricks (Stakhov 22). Renaissance architects, 
artists and designers frequently employed Golden Section proportions in eminent 
works of art, sculptures, paintings and architectures (Akhtaruzzaman and Shafie). 
According to many historians, they were nowhere near the first. In fact, many 
architects through the ages have either intuitively or deliberately used the Golden 
Section “in their sketches and construction plans, either for the entire work or for 
the apportionment of parts” (Posamentier and Lehmann 231).  
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 Pythagoras, the Greek father of mathematics, is also considered to be the “father 
of aesthetics.” Aristotle’s Metaphysics provide proof of his mentor’s beliefs 
concerning “a pure, clean cosmos concealed by the chaos of appearances.” 
Pythagoras believed numbers “revealed this hidden order.” It was he (or one of his 
followers) who first proved that “the natural notes of a plucked string only and 
always occur at regular intervals - when the string is subdivided at ratios of 2:1, 
3:1, and so on.” The same harmonies existed at “the grandest cosmic levels,” 
Pythagoreans believed; "the music of the spheres" is a metaphysical principle 
derived from such Pythagorean theories (“As Easy”). 

 Pythagoras employed arithmetic, geometric and harmonic proportions, and the 
law of the Golden Section. He gave exceptional consideration to the Golden 
Section by choosing the pentagram as the distinctive symbol of the “Pythagorean 
Union.” Plato analyzed the five regular polyhedrons (the so-called Platonic solids) 
and emphasized their ideal beauty, further developing Pythagorean theories on 
harmony (Stakhov 40). 

 Not long after Pythagoras, Greek mathematician Phidias (Gr. Φειδίας) (490-430 
BC) appears to have applied Phi while designing the Parthenon sculptures. Two 
millennia before Phidias and across the Mediterranean Sea, the Egyptian engineers 
of the pyramids were ingenious architects who used both Pi (π) and Phi (φ) in the 
structural design of the Great Pyramids (Akhtaruzzaman and Shafie). The 
pyramids served not only as vaults of a Pharaoh’s mortal remains, they were also a 
tribute to his majesty and power, and a monument to the riches of the country, its 
history and its culture. The pyramids clearly demonstrate deep “scientific 
knowledge” embodied in their forms, sizes, and orientation of terrain. “Each part 
of a pyramid and each element of its form were selected carefully to demonstrate 
the high level of knowledge of the pyramid creators.” (Stakhov 34). 
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 The pyramids were constructed to endure for millennia, “for all time.” As the 
Arabian proverb says: “All in the World are afraid of a Time. However, a Time is 
afraid of the Pyramids” (Stakhov 34). The mathematical principle that the square 
of the hypotenuse of a right triangle (the side opposite the right angle) is equal to 
the sum of the squares of the other two sides was well-known to the Egyptians 
long before Pythagoras proved it (Pythagorean Theorem). They selected the 
golden right triangle as the geometric calibration instrument for the construction 
of Cheops’ Pyramid. The initial height of Cheops’ Pyramid is calculated to have 
been equal to H = (L/2) x τ = 148.28 m. The ratio of the external area of the 
pyramid to its base is then equal to the Golden Mean (Stakhov 36). 

 Fibonacci in Solar Observation 

 Three to five thousand years ago, around the same time the pyramids were built, 
Arkaim and Stonehenge were built; in the Chernihiv region, near the city of 
Ichnia, Ukraine, yet another manmade tool for solar observation was built using 
the Golden Ratio. Bezvodovka is an ancient Bronze Age architectural land 
monument spanning nearly twenty square kilometers. The ancient mounds of 
earth were thought to be burial mounds of nomadic tribes until recently, when 
aerial photography records and computer applications made it possible to 
determine their true purpose. 

 Oleksandr Klykavka, an agrochemist and soil scientist from the National 
Agricultural University in Kyiv, Ukraine, believes Bezvodovka was an ancient solar 
observatory like the other more famous prehistoric monuments. It is a scientific 
“instrument of incredible scale, the components of which are land, sky and cosmic 
objects,” he says. At the group of mounds in the Bezvodovka plateau, the 
regularities of the movements of the sun and other celestial bodies are discernible 
on the horizon. Klykavka explains that Arkaim is located at Latitude 52°39′ North, 
Stonehenge is located at Latitude 51°11′ North, and Bezvodovka is located at 
Latitude 50°31′ North. At a distance of nearly two thousand kilometers between 
them, “the three observatories are located within a single belt where the real 
shape of the Earth (non-ideal sphere) intercrosses with the imaginable correct 
shape.” All three observatories have a Northern-eastern view of the sunrise on 
June 22 – the longest day of the year (Klykavka). 

 Moreover, Klykavka says, “The “distance between the center and the western 
distant site is specifically 830m rather than 700 or 1000m. This is significant 
because, if an imaginary giant Fibonacci ‘Golden Spiral’ could be transposed over 
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the observatory so that “its beginning comes from the center, the spiral would 
proceed through a few close sites and then some distant ones.” This, he says, 
explains why there is a distance of 2960m to some distant sites.” It is a plausible 
explanation for why the eight original mounds (five extant) were built so distant 
from each other (Klykavka). 

 Fibonacci in Renaissance Architecture 

 Architectural design using the Golden Ratio or Fibonacci numbers was prevalent 
in Renaissance architecture. One such example is the Santa Maria del Fiore 
Cathedral in Florence, whose dome was constructed in 1434 by Filippo 
Brunelleschi (1337-1446). The rough sketch of the dome by Giovanni di Gherardo 
da Prato (1426) exhibits the Fibonacci numbers, 55, 89, and 144, as well as 17 
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(half the Fibonacci number 34) and 72 (half of 144) in the projection of curvature 
of the vault segments (''cells'' or "sails") (Posamentier and Lehmann 239).  

 “The Apollo Project of the Golden Renaissance,” by Nora Hamerman and Claudio 
Rossi, notes: “The pointed-fifth curve happens to be an arc of a circle whose 
radius is in the ratio of 8:5 to the radius of the circumscribing circle of the internal 
octagon base - a ratio in the Fibonacci series that closely approximates the famous 
Golden Section, the self-similar growth ratio . . . Similarly, the pointed-fourth cur-
vature yields a ratio of 3/2 of the radius of the external base octagon to the radius 
of the vault curvature, another proportion in the Fibonacci growth series.” (30) 

 Hidden Fibonacci numbers were recently discovered in the façade of the Church of 
San Nicola in southern Italy, which was already centuries old by the time the 
Augustinians enlarged it in the late thirteenth century, on the cusp of the 
Renaissance. Another eight hundred years passed before restoration efforts in 
2015 made it possible to discover a series of circular and rectangular inlays in one 
of the church’s lunettes in the portal. Professor and petrology expert at the 
University of Pisa, Pietro Armienti, recognized that the arrangement of the 
geometric figures in the marble intarsia contained a coded message while closely 
observing the process of marble cleaning. Professor Armienti published his 
research report in the “Journal of Cultural Heritage” explaining that the formerly-
indecipherable artifact embodies an explicit reference to the findings of Leonardo 
Fibonacci (“Fibonacci Numbers”).  

 The first nine numbers of the Fibonacci sequence, 1, 2, 3, 5, 8, 13, 21, 34 and 55, 
denote the radii of the various circles in the design. To Professor Armienti, the 
inlaid tiles “can be used as an abacus to draw sequences of regular polygons 
inscribed in a circle of given radius” and was “made to calculate with good 
approximation the sides of the regular polygons inscribed” in the largest circle 
(“Fibonacci Numbers”).  

 The arabesque is inscribed within a circle, which is inscribed within a square, 
which is inserted in a rectangle whose ratio is the Golden Ratio. Armienti 
explains, “The Golden Ratio recurs in the grid of the background, now fully visible 
after the restoration, and it is precisely the background that provides the key to 
understanding the meaning of the lunette and its prominent position on the 
façade” (Armienti).  
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 Armienti’s article, “The Medieval Roots of Modern Scientific Thought. A 
Fibonacci Abacus on the Facade of the Church of San Nicola in Pisa,” is a 
fascinating study providing many detailed descriptions of the various Fibonacci-
related components of the design with explanations of how they ultimately served 
as a tool for “the education of elites, in tune with the aims of scholastic 
philosophy: a precious gift of the wisdom of the ancients whose heritage must be 
valued.” Here are just a few of the details he provides: 

  

 The concentric coronas forming a girdle in the intarsia have maximum and minimum radii of 
21 and 13 respectively and have their centers on the circle of diameter 34. This arrangement 
describes the property that FN/FN–2 = 2 with the advance of FN-3. In fact, all the circles of 
size 21 in the girdle are tangent both to the circle 55 and to the circle of size 13 in the center. 
With reference to the diameters, this implies: 110 = 42 + 42 + 26 that is equivalent to: 55 
= 21 + 21 + 13 (or 55/21 = 2 advance = 13). The same rule applies to circles of radii 34 
and 13, in fact 34 = 13 + 13 + 8 (there are four coronas of size 2, between the two circles of 
radius 13, whose centers lie at the extremes of the radius of circle 34).  
 
The size of the line borders in this way is necessarily 2, as required by the fact that the 
difference between 21 and 13 is 8 and has to be distributed on four coronas of equal size.  
 
The other linear elements of the intarsia are inscribed in circles of 55–2 = 53 respectively (2 is 
the width of all the coronas), and 34–2 = 32.  
 
Fifty-three and 32 are the sums of the N–2 Fibonacci numbers that precede 55 and 34 in the 
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series. This arrangement is related to the second property stated above for the Fibonacci series.  
 
Lower limits of the battlements are arranged on the circle of radius 34–2, while their cusps are 
defined by a kink marked by the circle of radius 42 = 55–13 along which the circles of radii 1 
and 2 are also aligned.  
(Armienti) 

 Other details, linked to the grid in the lunette around the intarsia, are proof that 
the author of the design was aware of the relations between the Golden Ratio and 
the Fibonacci series. This allowed him to find and represent to a very good 
approximation, regular polygons inscribed in a circle of a given radius r 
(Armienti). 

 The conclusion must be made that artists, theologians, mathematicians, and 
artisans worked closely together to create this masterpiece, “following a common 
code based on the insights of Fibonacci, and with utter dedication to their art.” 
Armienti believes he has deciphered only a small part of this code, and there are 
many historiographic and mathematical problems which remain to be solved. For 
example, he says, “the intarsia shows that the artists were fully aware of the 
connections that existed between their plan, the Fibonacci sequence and the 
Golden Ratio, even though, until today, the discovery of these connections has 
been attributed to Luca Pacioli, a mathematician of the early seventeenth century” 
(Armienti). Clearly, Pacioli had only rediscovered what others had known – and 
revered - hundreds of years before. 

 The Golden Ratio in Sculpture 

 Polyclitus and Phidias are regarded as the most famous and authoritative masters 
of ancient Greek sculpture of the Classical era. Their statues were long considered 
the standard of beauty and harmonious construction. Polyclitus’ statue of 
Doryphorus (Spear Bearer) (late fifth/early fourth century BCE) is considered one of 
the greatest achievements of classical Greek art. This statue is an archetype for the 
proportions of the ideal human body established by ancient Greek sculptors. The 
name ascribed to this sculpture is especially important because the 
“Canon” (sometimes spelled “Kanon”) was not only a statue which deigned to 
display perfect human proportion, but was, in fact, a physical representation of 
what Polyclitus had described in his treatise on beauty, also titled “Canon.” While 
both his written treatise and the original statue are now lost, marble copies of the 
statue remain and text records of observations by ancient researchers and 
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historians enable modern vicarious examination of what some considered to be 
the most exquisite model of the perfect human form (Sartwell).  

The ancient physician Aelius or 
Claudius Galenus (often Anglicized 
as Galen and better known as Galen 
of Pergamum) (130-210 CE), 
characterized the Canon as specifying 
the perfect symmetries of the body; 
he describes the statue’s proportions 
as perfect, in “the finger to the 
finger, and of all the fingers to the 
metacarpus, and the wrist, and of all 
these to the forearm, and of the 
forearm to the arm, in fact of 
everything to everything… just as it 
i s w r i t t e n i n t h e C a n o n o f 
Po lyc l i tus” (Sar twe l l ) . Some 
attribute such “perfection” to the 
fact that Polyclitus applied the 
principles of the Golden Mean to his 

creation. Russian architect G.D. Grimm analyzed the harmonic dimensions of the 
Doryphorus and presented the following connections between the Canon and the 
Golden Mean (Proportionality in Architecture 1933):  

  1. First golden cut division: at the navel  
 2. Second division: lower part of the torso, passes through his knee 
 3. Third division: passes through the line of his neck 
 (Stakhov 41) 

 In addition to the Parthenon, Phidias created enormous statues of Athena, 
including one in bronze (Winner in Battle) and another in ivory and gold Athena 
Parthenos (The Virgin) in commemoration of the Athenian victory over the Persians. 
He also created the statue of Zeus for the Olympian temple of Zeus (about 430 
B.C.), which is considered one of the Seven Wonders of the Ancient World. 
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Despite the unprecedented monumental sizes of his sculptures (9m Athena 
Parthenos and 13m Zeus), Phidias constructed them with strict adherence to the 
principles of harmony based on the Golden Mean (Stakhov 5-6). 

 Paintings, Drawings, Portraits 

 “Phi is more than an obscure term found in mathematics and physics.” It appears 
to inform not only design and construction, but even our aesthetic preferences. 
When research subjects (who were not mathematicians or physicists familiar with 
phi) were asked to view random faces, those consistently deemed to be most 
attractive were those which exhibited “Golden Ratio proportions between the 
width of the face and the width of the eyes, nose, and eyebrows.” Researchers 
conclude “the Golden Ratio elicited an instinctual reaction” (Hom). 

 Attempts to create an ideal model of a harmoniously developed human body 
continued during the age of the Renaissance. The ideal human figure created by 
Leonardo da Vinci (1452-1519) is widely known. His drawing of “Vitruvian Man” 
is said to illustrate the Golden Ratio (Hom). The ratio of the square side to the 
circle radius corresponds to the value of Phi with a deviation of just 1.7 percent 
(Posamentier and Lehmann 257). It clearly shows “pentagonal” or “five-fold” 
symmetry which is characteristic for flora and animals (Stakhov 43). The man’s 
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head, two hands, and two legs are positioned in the form of a pentagram, as if 
they are beams of a pentagonal star. Da Vinci based the measurements of his ideal 
man on the proportions described by Vitruvius (chapter 1 of Book III) 
(Cartwright).  

L e o n a r d o d a V i n c i 
illustrated the book De 
Divina Proportione (1509) by 
Franciscan monk Fra Luca 
Pacioli (c. 1445-1517), in 
which the latter referred to 
the number Phi as the 
"Divine Proportion;" Da 
Vinci later called this sectio 
aurea, or the Golden Section. 
Many assume that Da Vinci 
was therefore “consciously 
guided by this magnificent 
ratio” and used the Golden 
Ratio in all (or most) of his 
work (Posamentier and 
Lehmann 260). Some claim 
that he used it to define all 
of the proportions in his 
painting, The Last Supper, 
“including the dimensions 
o f t h e t a b l e a n d t h e 
proportions of the walls and 

backgrounds.” The Golden Ratio also appears in his iconic portrait, Mona Lisa. 
Many other famous artists are believed to have employed the Golden Ratio, 
including Michelangelo, (Madonna Doni) Raphael (Sistine Madonna), Rembrandt (A 
Self-portrait), Seurat (Circus Parade), and Salvador Dali (Half a Giant Cup Suspended 
with an Inexplicable Appendage Five Meters Long) (Posamentier and Lehmann; Hom). 

 It is uncommon for an artist to explicitly testify to the conscious use of Fibonacci 
numbers as the basic structure of their work. However, one such artist is the 
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German Rune Mields (b. 1935) who explained that her piece titled Evolution: 
Progression and Symmetry III and IV is “subject to the laws of symmetry” in that, in 
“‘an ascending line, a progression of triangles is generated, with the help of the 
f a m o u s m a t h e m a t i c a l s e r i e s o f t h e L e o n a r d o P i s a n o , c a l l e d 
Fibonacci’” (Posamentier and Lehmann 266).   

 Fibonacci in Modern Architecture 

 Fibonacci’s influence remains pervasive in Modern Architecture, where the 
sequence itself has become a feature of the design. The smokestack of the power 
station in Turku, Finland, has become a midtown landmark because it showcases 
the first ten numbers of the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, 34, and 
55) in a playful display of bright neon numbers, two meters high. The “Fibonacci 
Chimney” was created in 1994 by Italian artist Mario Merz as an environmental 
art project (Lobo). It is just one of his many “conceptual” works which 
incorporate the Fibonacci sequence. His “Fibonacci Naples” (1970) “consists of 
ten photographs of factory workers, building in Fibonacci numbers from a solitary 
person to a group of fifty-five.” Merz featured Fibonacci’s numbers because his 
desire was to “protest against a dehumanized, consumer-driven society” by 
creating art inspired by a sequence “which underlies so many growth patterns of 
natural life” (Livio 176). 

 Mole Antonelliana 

 Originally planned to function as a Jewish synagogue, the Mole Antonelliana 
(1863-1889) is used today as a movie museum; the five-floor building in Turin, 
Italy, is believed to be the tallest museum in the world. It is also Europe's tallest 
brick structure with the tallest dome. On one side of the four-faced dome today, 
the first Fibonacci numbers are illuminated by red neon lights. Il Volo Dei Numeri 
(Flight of the Numbers) (1998) was designed by Mario Merz (“Fibonacci – Flight”). 

 Le Modulor 

 Like Fibonacci before him, 20th-century architect Charles-Edouard Jeanneret 
(known as Le Corbusier) (1887–1965) became fascinated by mathematical 
concepts while traveling; he had journeyed throughout Europe and learned 
principles of proportion while investigating ancient buildings everywhere he went, 
particularly from German architects (Cohen). Decades later, Le Corbusier 
published Le Modulor: A Harmonious Measure to the Human Scale Universally Applicable 
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to Architecture and Mechanics and insisted his work was a unique, universally-
applicable measuring system that would give architecture a mathematical order 
oriented to a human scale. “Le Corbusier developed his doctrine for the 
proportions of construction by combining the imperial measuring system based 
on the foot with the metric decimal system and relating this to human body 
measurements. He started from an assumed standard size of the human body and 
marked three intervals related to each other in the proportion of the Golden 
Ratio” (“Le Corbusier”). Specifically, he explained, “A man with a raised arm 
provides the main points of space displacement – the foot, solar plexus, head, and 
fingertip of the raised arm – three intervals which yield a number of sections that 
are determined by Fibonacci’ (Posamentier and Lehmann 241). It was “a tool of 
linear or optical measures, similar to musical script,” with which he was familiar 
(Cohen). His systematic “tool” for “planning architecture and industrial products 
gained worldwide currency and was applied by countless practitioners” (“Le 
Corbusier”).  

 The Core 

 Built in the shape of a sunflower and the size of a spaceship, the Core was first 
built in 2005 and re-imagined in 2017-2018. Home to the Invisible Worlds 
exhibition at the Cornwall Education Center, the building was designed using 
natural forms (biomimicry) and sustainable construction and patterns based on 
Fibonacci numbers (“How”). 

 Architect Jolyon Brewis explains: “We decided that the structure of the building 
itself should be derived from the double spiral, and we looked to the mathematics 
behind these spirals in nature to generate the design. We were delighted to 
discover that this produced an efficient and elegant network of timber 
beams” (“Journey” 9). 

 Modern Photography 

 San Francisco landscape photographer Mike Spinak recounts some of the many 
ways modern artists, including photographers, “derive a wide variety of 
mathematical constructs from the Golden Mean, for the sake of composition 
guidelines.” He says: 

 They divide a line segment according to ~1.618 (the Golden Section). They make a rectangle 
where the long sides are ~1.618 times as long as the short sides (the Golden Rectangle). They 
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make an isosceles triangle where the two long sides of the triangle are ~1.618 times the length 
of the short side (the Golden Triangle). They make a triangle where the longest side is ~1.618 
times as long as the second longest side, which is ~1.618 times as long as the shortest side 
(Kepler Triangle). They make a logarithmic spiral which gets wider by a factor of ~1.618 for 
every quarter turn of its rotation (the Golden Spiral). And so on, with numerous others, such 
as the golden rhombus, Bakker’s Saddle, Saint Andrew’s Cross, and Bouleau’s Armature of 
the rectangle. Some artists also like more oblique and esoteric constructs, such as division of 
the visible light spectrum by the Golden Mean, or segments thereof (Spinak).  

 Dallas photographer James Brandon offers a few suggestions for ways that 
amateur photographers can use the Golden Ratio to compose a photograph. 
According to Brandon, the software program Adobe Lightroom 3 has a Golden 
Ratio overlay option for cropping an image. Lines of interest or points in a 
photograph are lined up to coincide with a grid of the Golden Ratio. By taking the 
“sweet spot” of the Fibonacci Ratio and duplicating it four times into a grid, the 
result looks to be a rule-of-thirds grid. However, upon closer inspection it is 
evident that the grid does not split the frame precisely into three pieces. Instead of 
a 3-piece grid that divides the frame 1+1+1, there is a grid dividing the frame 
vertically and horizontally 1+.618+1 (Brandon).  

 A popular way to apply the Fibonacci spiral to a composition is to position “the 
primary element of the picture approximately where the tightly curled ‘end’ of the 
golden spiral would fit into the frame.” The photo is “considered even more 
aesthetically pleasing” if the picture subject can be arranged so that “some of the 
picture’s lines roughly follow the spiral’s lines.” The various other constructs 
listed by Spinak are occasionally “used for choosing relative proportions – such as 
composing with the background building ~1.618 times as tall, in the picture, as 
the person in the foreground. Or, they’re used to choose color combinations for a 
picture’s palette” (Spinak).  

 Spinak says the practice of applying the Golden Mean to composition has 
“seemingly become elevated to established orthodoxy.” A Google Search on the 
topic, he adds, “will bring up more than one and a half million listings.” Moreover, 
“most basic photography instruction books discuss composing with the Golden 
Mean.” Adobe Lightroom has “several Golden Section overlays built into the 
program,” including overlays for a Golden Ratio grid, a golden spiral, and a Saint 
Andrew’s cross. Visitors to other websites can see their pictures “superimposed 
with Golden Mean overlays. There are also software applications available for 
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overlaying anything on your computer screen with a variety of Golden Mean-
derived visual constructs.” Finally, Golden Mean calipers can be purchased online 
from hundreds of sources. 

 The Golden Mean is popular not only for composing, but also for analyzing 
compositions. “Analysts deconstruct pictures by drawing various line and pattern 
overlays upon pictures” and determining whether and how closely a particular 
picture conforms to some derivative of the Golden Mean (Spinak). 

 Brandon insists, “Fibonacci’s Ratio is a powerful tool for composing your 
photographs, and it shouldn’t be dismissed as a minor difference from the rule of 
thirds. While the grids look similar, using Phi can sometimes mean the difference 
between a photo that just clicks, and one that doesn’t quite feel right.” He 
considers Phi a far superior composition tool to use “and [a] much more 
intelligent and historically-proven method for composing a scene” (Brandon). 

 Fractals 

 Author Jess McNally describes fractals as “patterns formed from chaotic equations 
[that] contain self-similar patterns of complexity increasing with magnification.” 
Nearly identical but smaller copies of the whole are created when you divide a 
fractal pattern into parts. By duplicating or repeating relatively simple fractal-
generating equations, infinite complexity is formed. Unique but recognizable 
patterns are created. Remarkably, the number of particular geometric shapes of a 
specific size formed within the patterns often turn out to be Fibonacci numbers! 
(McNally).  

 F I B O N A C C I  I N  M U S I C  

 Musical Composition  

 It is not uncommon for musicians to find mathematics appealing; both disciplines 
involve precision, organization, and structure. Pythagoras, for example, developed 
musical theories based on “mathematical harmonics in frequency ratios of whole 
number intervals” and Galileo’s father Vincenzo, a lutenist, wrote a treatise on 
string theory (pitch and string tension)” (Hunt). In the 17th century, Gottfried 
Leibniz wrote that "music is the pleasure the human mind experiences from 
counting without being aware that it is counting.” One might say math dances 
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with music in the mind. Indeed, Pythagoras “married” math and music when he 
“heard the sound of hammers on anvils and produced a formula connecting their 
mass to the sound they made” (Paphides). Nevertheless, while investigating 
possible relationships between the Golden Section and musical structure, one 
should not unreservedly determine the aesthetic aims of particular composers 
without documented testimony or material evidence, for errors are often made in 
measurement. The numerical value for the Golden Ratio, 5/8, is easy to confuse 
with the simple proportion of thirds (Fischler 31). Analysis of artwork by the 
cubist Juan Gris found that he may have used the diagonal of a Golden Rectangle; 
however, Gris categorically denied in a letter that he used the Golden atio to 
proportion his paintings (Fischler 31). Similar caution is warranted before 
drawing conclusions that any particular artist was consciously guided or inspired 
by the Fibonacci numbers when creating their works.  

 Whether or not Gris used elements of the Fibonacci sequence, diverse studies 
suggest composers often incorporate the golden proportion in musical 
compositions, perhaps due to its power in constructing well-balanced, beautiful 
and dynamic movements, rhythms and melodies. For example, Claude Debussy’s 
music “contains intricate proportional systems” based on the Golden Ratio; 
specifically, the “dramatic climax of Cloches a travers les feuilles occurs when “the 
ratio of the total number of bars to the climax bar is approximately 1.618” (Van 
Gend). Fibonacci numbers harmonize naturally and the exponential growth in 
nature defined by the Fibonacci sequence “is made present in music by using 
Fibonacci notes” (Sinha). Specifically, when the Golden Section – expressed by the 
sequence of Fibonacci ratios – is used by a composer, it is “either used to generate 
rhythmic changes or to develop a melody line” (Beer 4).  

 “The grammar of music – rhythm and pitch – has mathematical foundations. 
Rhythm depends on arithmetic, harmony draws from basic numerical 
relationships, and the development of musical themes reflects the world of 
symmetry and geometry.” Composers rely on symmetry to create progressions in 
theme and variation; they count on mathematical structure such as “prime 
numbers to create a sense of unease” and whispers of dissonance by creating 
unexpected or nontraditional rhythms and meter, such as Messiaen does in his 
famous Quartet for the End of Time. Conversely, simple ratios suggest harmony. 
“When we hear two notes an octave apart, the frequencies of the two notes are in 
an exact 1:2 ratio, so we feel we're hearing the same note.” They are so similar in 
sound that “we give them the same name” (Du Sautoy).   
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 Natalie Hoijer investigated compositions of concert music and compared the use 
of mathematical patterns such as the Fibonacci Series and the Golden Mean to 
other mathematical symmetries such as palindromes, crab canons, and fractals, 
and found that “the Fibonacci Series and Golden Mean were the most effective 
compositional tools and yielded the most aesthetically pleasing results” (Hoijer). 
This may explain why many composers, from Bartók to Debussy, have found that 
“the organic sense of growth found in the Fibonacci sequence of numbers is “an 
appealing framework” for orchestrating unique, memorable, and distinct 
combinations of melodic courtship (DuSautoy). Emeritus Professor of Music 
Theory Michael R. Rogers says, “the prevalence (and almost ubiquity) of Golden 
Sections throughout the so-called common-practice period is well-documented in 
many studies” (Rogers 249). 

 Beethoven 

 Rogers describes how Beethoven’s Piano Sonata No. 14 in C# Minor, op. 27, no. 2 
serves as an archetype of golden-section form in general and represents a model of 
tonal clarity, the kind of temporal model with which Chopin was familiar. In the 
first movement of the Beethoven sonata, there are regularly expanding tonal 
blocks. “Each new point of arrival develops from the preceding tonal area and 
simultaneously prepares for the next.” As each new goal cadence relates 
temporally both to what has gone before and to what is going to follow, “the 
feeling of gathering strength is inescapable.” While “the arrivals are spaced 
further and further apart, their durational ratios to one another remain constant 
[and] the harmonic control is metered out” (Rogers 248).  

 Haylock believes he discovered a number of occurrences of Golden Ratio in the 
first movement of Beethoven's Fifth Symphony. “That's the one that starts with the 
famous motto theme: 'da, da, da, daah'!” He says, “In Beethoven's original score 
there are 600 bars before the final statement of the opening motto. But a 
statement of the opening motto also appears at bar 372. So, we have this structure 
for the three main statements of the motto: motto starts ... 372 bars ... motto 
starts... 228 bars ... motto starts”…divided in Golden Ratio proportion (Haylock). 

 Haylock mentions two other pieces of evidence he offers as proof that Beethoven 
used the Golden Section to create his most famous masterpiece: the 'exposition' in 
the first movement and the coda that is 129 bars long. “Divide this coda up using 
the Golden Section and you get 49 bars and 80 bars.” After 49 bars of the coda, 
Beethoven “introduces a completely new tune that has not appeared in the 
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movement so far. Before Beethoven no-one would ever introduce new material in 
a coda! So this is a very significant point in the coda.” Haylock admits that we can 
never know whether Beethoven was “signaling his piece of radical creativity in 
this very long coda by linking it with the Golden Section” (Haylock).  

 Mozart 

 It is well-documented that Mozart had an early fascination with and 
predisposition for all things mathematical, even to the extent of loving musical 
gematria, or symbolic number combinations in music. “His sister Nannerl 
mentioned he was always playing with numbers and even scribbled mathematical 
equations for probabilities in the margins of some compositions (e.g. Fantasia and 
Fugue in C Major, K394).” Some of these may have been Fibonacci number 
calculations. Elements of the Golden Section appear to balance his musical lines 
(ratios of theme to development or musical exposition to recapitulation) and it 
seems likely Mozart used the Fibonacci sequence in his Piano Sonata #1 in C major 
K279 as well (Hunt).  

 Bach 

 Loïc Sylvestre and Marco Costa found, through analysis of the mathematical 
architecture of the printed edition of Bach’s compositions, that he “intentionally 
manipulated the bar structure of many of his collections so that they could relate 
to one another at different levels of their construction with simple ratios such as 
1:1, 2:1, 1:2, 2:3.” The Art of Fugue (1751), they say, shows that the whole work 
was conceived on the basis of the Fibonacci series and the Golden Ratio based on 
bar counts. For example, “distribution of Golden Ratios is evident in the numbers 
of bars in brackets, and in each of the subdivisions of counterpoints 
8-14” (179-180). 

 Chopin 

 One of the macro-rhythmic organizational principles underpinning the harmonic 
and melodic ambiguities in Chopin’s Prelude in A Minor is the Golden Section. 
(Rogers 245). Rogers asserts, “Golden sections are created on a melodic level 
within each of the first and second appearances of the minor-seventh 
descent” (247). Wondering why Chopin would embed one Golden Section 
(calculated in beats rather than measures) within another within yet another, he 
decides “this is a tactical timing strategy that works as a series of signals, 
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strategically placed and deliberately paced, which regulate the harmonic 
ambiguities and help to foreshadow the ultimate establishment of tonal stability – 
a stability that arrives, in this case, just in the nick of time – at the very end.” 
These “produce a kind of gradually emerging and increasingly focused view of 
tonal centricity” (248). 

 Handel 

 Examples of deliberate application of the Golden Ratio can be found in Handel’s 
Messiah, which consists of 94 measures. In measure 34, after 8/13 of the first 57 
measures, the entrance of the theme “The kingdom of this world…” marks an 
essential point (34/57). There is a very important solo trumpet entrance (“King of 
Kings”) in measures 57 to 58, after about 8/13 of the whole piece (57/94) and 
another one after 8/13 of the second 37 measures, in measure 79 (“And He shall 
reign…”) (Beer 5).  

 Bartók 

 Another of the most famous classical composers believed to have been inspired to 
use the Fibonacci numbers in musical composition was Hungarian Béla Bartók 
(1881-1945). Hungarian musicologist Erno Lendvai investigated Bartók’s works 
“painstakingly” and published books and articles testifying that “from stylistic 
analyses” he was “able to conclude that the chief feature of his chromatic 
technique is obedience to the laws of Golden Section in every movement” (Livio 
188). For example, the eighty-nine measures of Music for Strings, Percussion and 
Celesta are “divided into two parts, one with fifty-five measures and the other with 
thirty-four measures, by the pyramid peak” (in terms of volume) of the movement 
(Beers 189).  

 Nevertheless, other musicologists have disputed Lendvai’s conclusions and it is 
hard to determine Bartók’s true intentions when he himself “said nothing or very 
little about his own compositions” and “did not leave any sketches to indicate that 
he derived rhythms or scales numerically” (Livio 190).  

 Modern Music 

 In 2009, American Jazz artist Vijay Iyer explained why he and his trio preferred 
Fibonacci numbers when composing and performing music. He said the 
sequence’s scaling property is very interesting; “because the ratios get successively 
closer to the Golden Ratio, the ratio 5:3 is not the same as, but ‘similar’ to the 

 7 4



ratio 8:5, which is ‘similar’ to the ratio 13:8, or 144:89, or 6,765:4,181.” His trio 
enjoyed exploring compositions that are “asymmetrical in a Fibonacci way: a short 
chord and then a long chord, three beats plus five beats, totaling eight beats.” 
With a beat that is “standard four-four time,” you could step to the beat, hearing a 
“chord when you take your first step, and then another chord while your knee is 
aloft between the second and third steps.” He said, “This is a rhythm that you 
hear in all kinds of places – like Michael Jackson's Billie Jean” (Iyer). Working with 
asymmetry and “move it through Fibonacci-like transformations,” the trio may 
“perform an asymmetric ‘stretch’ that maintains the same ‘golden’ balance over 
the entire measure,” but they transform it a bit, trying to “preserve an 
‘impression’ of the original – the short-and-long-ness of it – to see if [they]…can 
achieve that feeling of similarity” (Iyer). 

 Fibonacci in Instruments: The Violin 

 In “Stradivarius: Music of the Golden Ratio,” Feng Wu voices the claim made by 
many that master luthier Antonio Stradivari (1644-1737) of Cremona, Italy, 
deliberately used the Golden Ratio to make what most people in the world 
consider the greatest string instruments ever created. His violins are highly prized 
for their tone quality and their aesthetic form (Wu). As Wu explains, Stradivari 
employed the system of design used by the ancient Greeks and the masters of 
Renaissance architecture, deriving all of his linkage dimensions and placements 
from a single length, the length of symmetry. “He employed the golden-section 
ratio and the proportion of the sides of simple triangles as well as the relationship 
of musical intervals to divide this length” (Bidwell). In addition, Stradivari “took 
special care to place the ‘eyes’ of the f-holes geometrically, at positions determined 
by the Golden Ratio” (Livio 184). 

 The Golden Ratio \phi = \frac{1+\sqrt{5}}{2} = 1.61803 can be found 
throughout the violin, the “Lady Blunt,” by dividing lengths of specific parts of the 
violin (Wu): 
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 Fibonacci in Instruments: The Piano  

 Some claim that there is significance in the fact that the intervals between keys on 
a piano of the same scales are Fibonacci numbers (Sinha). The first few Fibonacci 
numbers appear to be represented by the arrangement of thirteen keys along the 
keyboard in groups of two and three black keys between the eight white which 
comprise a full octave (Rory). However, Livio is a member of the choir which 
dismisses such notion; he explains in his book, The Golden Ratio: The Story of Phi, the 
World’s Most Astonishing Number, that “the chromatic scale (from C to B), which is 
fundamental to Western music, is really composed of twelve, not thirteen, 
semitones” and, more importantly, the arrangement of the keys on a piano “in two 
rows, with the sharp and flats being grouped in twos and threes in the upper row, 
dates back to the early fifteenth century, long before … any serious understanding 
of Fibonacci’s numbers” (Livio 185).  
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 F I B O N A C C I  I N  F I L M   

 When asked by Scott MacDonald in an interview for “Film Culture” in the late 
seventies whether he had music in mind when he made the film States (1967, 
Revised 1970), structural filmmaker Hollis Frampton said, “It was one of the few 
times that I’ve made a real score, or graphic notation ‘by the numbers.” While 
looking for a way to order the collision of three natural substances (salt, milk, and 
smoke), the experimental digital artist thought about using an artificial number 
series because of the seeming random appearance of such collisions in nature, but 
then he decided to use the Fibonacci series instead. However, one problem with 
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the Fibonacci numbers is that the series is “insufficiently dense: if you say you will 
put an image at frame 1, frame 2, frame 3, frame 5 and so forth, pretty quickly you 
have an image out around frame 1000.” To avoid this problem, Frampton took not 
only the original Fibonacci series, but its first four harmonics. That is, he 
“multiplied each of the numbers by 1, 2, 3, and 4, which in musical terms would 
give you the fundamental, the octave, the twelfth, and the second octave.” Then, 
he allocated three different centers – ¼, ½, and ¾ of the way through a 24,000-
frame time line (1000 seconds) – for images of the substances in their gas, liquid, 
and solid states to spread in multiple directions. So, while Hampton said he had 
no particular piece of music in mind, nor even music itself, he did purposefully 
“use primitive procedures which are typical of music” to manipulate the harmonic 
series while producing his film. He explained why the Fibonacci series was useful 
to him in this purpose, saying, “The nice thing about the series is that it’s not 
very symmetrical, which means that the states tended not to overlap each 
other” (Frampton 110).  

  

 F I B O N A C C I  I N  A P P L I E D  A R T S  

 Industrial Design and Commercial Art 

 According to Ukrainian mathematician, inventor, and engineer Alexey Stakhov, 
many commercial products created today exhibit the Golden Rectangle shape in 
their design, including match boxes, lighters, books, credit cards, and suitcases 
(Stakhov 21). However, others insist some of these pop-culture beliefs are 
misconceptions because, for example, credit cards’ “aspect ratio is defined by the 
ISO/IEC 7810 standard as 85.60 mm x 53.98 mm, a ratio of 1.5858:1, which 
differs by 2% from the Golden Mean (Salingaros, “Applications”). In addition, the 
television, film, and computer industries do not consistently adhere to a Golden 
Mean standard aspect ratio; one would think that they would “try to utilize a 
human preference for a specific aspect ratio.”  Computer screens, for example, are 
manufactured according to “the unofficial but ubiquitous standard of 4:3 ≈ 
1.33:1.” Salingaros concedes that the MacBook Pro computer’s 15-inch screen 
does have 1,440x900 pixels, and thus an aspect ratio of 8:5 = 1.60:1. … within 
1.1% of the Golden Mean,” but “the perfectionist Steve Jobs could have easily 
used 1,440x890 pixels for an aspect ratio of 1.6180:1 if he had wished to use the 
Golden Mean” (Salingaros, “Applications”). 
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 The production and arrangement of floor tiles has benefited from Phi (Φ) (1.618) 
which informed the development of the 1970s Penrose Tiles, allowing surfaces to 
be tiled in five-fold symmetry (Hom). “In the 1980s, phi (φ) (0.618) appeared in 
quasicrystals, a then-newly discovered form of matter whose utility for industrial 
purposes has only just begun to be enthusiastically investigated” (Hom). 

 In visual arts and architecture, the 
Golden Section is the dynamic 
bearer of harmony (Stefanovic). 
Some have proposed that Fortune 
5 0 0 c o m p a n i e s a n d m a j o r 
companies all over the world 
design logos and products using 
the Golden Section, conceivably to 
sat is f y consumers ’ inherent 
preference for aesthetic harmony. 
Apple for example, was said to have 
used the Golden Ratio to design its 
logo and many of its products (a 
claim which has just as often been 
debunked) and it’s been said that 
Twitter used it to create their new 
profile page (Brandon). 

 Video Game Design 

 In 1984 two university undergraduates working out of a dormitory in Jesus 
College, Cambridge employed vector math to create video-game simulations of 
space in the spaceship game, “Elite.” David Braben and Ian Bell chose not to 
manually plot star systems by typing coordinates of star and planets into a 
database; instead, Braben attempted randomly-generated numbers. However, this 
method led to random arrangements of the game space object representations 
every time the game was loaded. To overcome this problem, Braben “used the 
Fibonacci sequence as a seed from which identical galaxies would be generated 
each time the game was played, all within a computer program a fraction of the 
size of a photograph taken with a mobile phone today” (Parkin).   

 More recently, Vigil Games' senior designer Mike Birkhead explained in the 2012 
article, “Tips from a Combat Designer: Fibonacci Game Design,” how he uses 
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Fibonacci sequence numbers to limit the options for players, such as the number 
of weapons players are allowed to have in a game, how many talent trees, or how 
many monsters can be spawned in an encounter. He usually limits the choices to 
three or five (Fibonacci numbers). “When I think about adding something to the 
game I constrain myself within Fibonacci's beautiful sequence, for it forces me to 
REALLY commit to ‘just one more,’ as now it is NOT just one more, but in fact 
several more” (Birkhead). He finds that this self-imposed limitation upon design 
choices empowers him to create programs and games more confidently and 
efficiently.  

  

 F I B O N A C C I  I N  L I T E R A RY  A R T S  

 Poetry 

 Aristotle maintained that poetic verse expresses a beautiful impression by 
deliberate rhythmic, numerical relations (Stakhov 40). Just as a red rose blossoms 
in a well-orchestrated sequence of botanical processes governed somehow by the 
Golden Ratio (some say), so, too, may the literary artist deliberately conduct a 
poetic symphony according to elements related to the Fibonacci numbers.  

 Two ways the Golden Ratio and Fibonacci numbers can be used to compose poetry 
are: 1) There can be poems about the Golden Ratio or the Fibonacci numbers 
themselves or about geometrical shapes or phenomena that are closely related to 
them; and 2) The Golden Ratio or Fibonacci numbers can be utilized in 
constructing the form, pattern, or rhythm of a poem. (Livio 198) 

 In Fascinating Fibonaccis, author Trudi Hammel Garland composed a limerick 
comprised of five lines with the number of beats in each line being two or three, 
and the total number of beats being thirteen (all Fibonacci numbers): 

  A fly and a flea in a flue                               (3 beats)  
 Were imprisoned, so what could they do?   (3 beats)  
 Said the fly, “Let us flee!”                           (2 beats)  
 “Let us fly!” said the flea,                           (2 beats)  
 So they fled through a flaw in the flue.       (3 beats)  
 (Livio 198) 
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 Fibs 

 Gregory K. Pincus coined the term “Fib” in 2006 to refer to a six-line, twenty 
syllable poem using the Fibonacci numbers and since then has maintained a 
popular blog, written a children’s book, and has recently authored a novel, The 14 
Fibs of Gregory K. (Pincus). The number of syllables in each line of a Fib is the sum 
of the previous two lines: 1, 1, 2, 3, 5, 8. “The constrained form makes you very 
conscious of word choice,” he says (Pincus). Since 2006, Mary-Jane Grandinetti 
has edited “The Fib Review,” an online poetry journal that specializes in only one 
particular poetry form – the Fibonacci poem. “Submissions are carefully selected 
for publication based on their poetic value and their adherence to the Fibonacci 
number sequence whether in syllable count, word count or any other 
experimental genre yet to be created” (Grandinetti). 

 There is no restriction for the subject of the Fibonacci poem, but the form of the 
Fibonacci poem is based on the structure of the Fibonacci number sequence. The 
poem, therefore, consists of lines with 1, 1, 2, 3, 5, 8 (and so on) syllables or 
words that a writer places in each line of the poem. As a literary device, it is a 
formatted pattern in which meaning is offered in any organized way, providing the 
number sequence remains the constancy of the form (Grandinetti). 

 “Fibonacci Salute” is a poem both inspired by and containing Fibonacci numbers 
in the text:  

  Fibonacci Salute 
 One finds 
 one self alone suddenly where there were 
 two when repeated percussion strikes spark  
 three-dimensional (make that  
 five or  
 eight) fires with fangs in swiftest motion, scythe-like, as in an unlucky  
 thirteen lightning strike, deal mortal blows until every  
 twenty-one gun salute cracking the still, chill air cackles, “He’ll never see  
 thirty-four.” 

  Shelley Allen 
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 D I S P U TA T I O N  O F  F I B O N A C C I  I N  A R T  

 Mike Spinak argues that most of the evidence presented for proof that the Golden 
Ratio is ubiquitous in art and nature is weak and misguided. He presents many 
detailed explanations for why this focus upon the use of the Golden Ratio is not 
beneficial for either artists, art, or patrons. He makes a case against what he says 
is known in academic circles as “the Golden Section hypothesis” or “the Golden 
Section theory.”  

 The Golden Section theory is “a prevalent belief about composition among 
photographers and other visual artists” which leads to discrimination against 
photographers (and others) who do not follow its prescriptions. Spinak believes 
“the Golden Section hypothesis has been elevated to established orthodoxy,” and 
it is unfortunate because artists and their works which do not conform to 
contemporary societal expectations for symmetry and compositional harmony are 
being discriminated against in the professional arts industry (Spinak). 

  “Any competent mathematician could easily derive a Golden Mean construct to 
match absolutely any subject placement within a frame” and interpretation is 
purely subjective. Unfortunately, subjective interpretation can be prejudiced 
(Spinak). Prejudice, of course, can be significantly detrimental to the financial 
health of those who are its victims, but it also harms society; for, “by accepting a 
flawed and rigid model as the accepted ‘basis for beauty,’ the biological basis for 
genuine beauty is replaced, and the results are unnatural” (Salingaros 
“Applications”). 

 Mathematician and polymath Nikos Salingaros confirms that “the Golden Mean 
does indeed arise in architectural design, as a method for ensuring that a structure 
possesses a natural and balanced hierarchy of scales.” This is the same 
“experimentally verified role found in a wide variety of structures in nature that 
exhibit hierarchical scaling” (Salingaros, “Applications”). However, researchers 
have also refuted claims that the Golden Mean was incorporated into design 
structure with paradigmatic case studies, two of which are introduced here.  

 The Parthenon in Athens 

 Salingaros joins Spinak in refuting the traditional “evidence” that the Parthenon 
was purposely designed or built using golden proportions. According to 
Salingaros, claims by artists and architects that people prefer “rectangles having 
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aspect ratio 1.618:1 approximating the Golden Mean” are “false and are chiefly 
due to failing to measure things accurately.” He uses perjorative terminology 
when he describes these as “embarrassing errors … perpetuated by a kind of cult 
mysticism” (Salingaros, “Applications”). 

 Geometrical analysis accounting for curvature of the Parthenon in 1980 
determined that the design shows no evidence of use of the Golden Mean. The 
building was designed “based on a module of 85.76 cm” (Salingaros, 
“Applications”). 

 The Parthenon’s dimensions: 

 “The ancient Greeks would have built it much closer to the Golden Ratio, if they 
were trying to do that,” Spinak asserts; after all, “they got the length on the North 
side of the Parthenon within about a tenth of an inch of the length on the South 
side” (Spinak). He also disparages the way some “Golden numberists” arbitrarily 
superimpose Golden Rectangles on photos of landmark buildings in order to 
demonstrate the presence of Golden Mean proportions.  

 Leonardo da Vinci 

 Golden “numberists” (as Spinak calls them) and adherents to the Golden Section 
hypothesis invariably use paintings by Leonardo Da Vinci to validate claims that 
Renaissance artists purposefully incorporated the Golden Mean into their works 
of art. However, Pacioli did not prescribe the Golden Ratio as the determinate 
proportion for all works of art as some allege; instead, “when dealing with design 
and proportion, he specifically advocates the Vitruvian system, which is based on 
simple (rational) ratios.” It appears that French mathematicians Jean Etienne 

Eastern Width 101 ft. 3.5 in

Western Width 101 ft. 3.9 in
North Length 228 ft. 0.8 in

South Length 228 ft. 0.7 in

Height 64 ft.

Length to Width ratio 1:2.25
Height to Length ratio 1:3.56
Height to Width ratio 1:1.58
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Montucla and Jerome de Lalande were the first to falsely claim Pacioli preferred 
and dictated the Golden Ratio for proportion (Livio 134-5).  

 “Vitruvian Man’s navel height / full height ratio is .604, not .618” which is a 
difference of “a little more than two and a quarter percent.” Spinak argues 
Leonardo would have placed the man’s navel slightly higher if he had intended to 
maintain golden proportion. According to Spinak, another of da Vinci’s iconic 
works is misrepresented as having been imbued with golden proportions: the 
Mona Lisa. Just as they do with the Parthenon, people place overlays of Golden 
Sections and Golden Rectangles atop the image and arbitrarily exclude part of her 
face or body to support their claims (Spinak). For example, some purport that a 
rectangle drawn around Mona Lisa’s face would have Golden Ratio dimensions; 
yet, Mario Livio charges, “in the absence of any clear (and documented) indication 
of where precisely such a rectangle should be drawn, this idea represents just 
another opportunity for number juggling” (162).  

 In conclusion, not everyone considers the Golden Mean as something to be 
celebrated, used, or obeyed religiously; nor are these detractors compelled to seek 
Fibonacci everywhere. While the idea of an amazing, mysterious, ubiquitous but 
purposeful pattern is appealing to some, others hold that such beliefs have no 
basis in reality and are “nothing more than superstition and hoax. They are not 
scientific observation based on evidence; they are mystical beliefs in numerology” 
and there is no need to embellish the magnificent splendor of nature or, for that 
matter, art (Spinak).  
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 C H A R T  O F  T E R M S  
 

Term Defined or 
Named By Symbol/Value Definition

Golden Mean Euclid

Point C is between points A and 
B so that the ratio of the short 
part of the segment (BC) to the 
long part (AC) equals the ratio 
of the long part (AC) to the 
entire segment (AB)

Golden Ratio 
Phi 

Golden Proportion 
Divine Proportion 

Golden Section

Euclid 
Barr (re Phidias) 

Pacioli 
Da Vinci

Phi (Φ) 1.618. . . 
phi (φ) 0.618. . .  
Greek letter Tt

A straight line is in extreme and 
mean ratio when, as the whole 
line is to the greater segment, so 
is the greater to the lesser. 1. 
Ratio of smaller part of a line 
(CB) to larger part (AC): CB/AC 
= ratio of larger part (AC) to 
the whole line (AB). Therefore, 
CB/AC = AC/AB. 2. Ratio 
b e t w e e n t w o s u c c e s s i v e 
Fibonacci numbers (after F8) 

Golden Angle 137.5°

1. Angle subtended by smaller 
arc when two arcs of a circle are 
in Golden Ratio 2. Angle that 
divides a full angle in a Golden 
Ratio (but measured in opposite 
direction so that it measures less 
than 180 degrees)

Golden Rectangle

1. Ratio of length to width is the 
Golden Ratio, 1:phi 2. Sides the 
lengths of Fibonacci numbers

Golden Triangle 
Sublime Triangle

1. Ratio of a side to base of an 
isosceles triangle is phi 2. Base 
angle 72° bisected creating two 
self-similar internal triangles 36°

Golden Spiral
Logar i thmic sp i ra l whose 
growth factor is φ (about 6.9) 
for every quarter turn it makes

 8 5

Source: fibonacci.com 



 
 

 

 

PA RT  I V  

 8 6



  

 I V.  F I B O N A C C I  I N  N AT U R E  

he Fibonacci sequence of numbers forms the best whole 
number approximations to the Golden Proportion, which, 
some say, is most aesthetically beautiful to humans. 
“Empirical investigations of the aesthetic properties of the 
Golden Section date back to the very origins of scientific 
psychology itself, the first studies being conducted by Fechner 

in the 1860s” (Green 937). Debate remains as to whether or not humans naturally 
prefer Golden Ratio (1.61803...) proportions in the organization and structural 
symmetry of art, music or nature, and some even deny that the Golden Ratio is as 
ubiquitous in nature as others proclaim. 

 Nevertheless, mathematical principles do appear to govern the development of 
many patterns and structures in nature, and as time passes, more and more 
scientific research finds evidence that the Fibonacci numbers and the Golden 
Ratio are prevalent in natural objects, from the microscopic structure proportions 
in the bodies of living beings on Earth to the relationships of gravitational forces 
and distances between bodies in the universe (Akhtaruzzaman and Shafie). 
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F I B O N A C C I  I N  B O TA N Y     

 As it relates to the development and structure of a plant, it is not uncommon to 
find representations of the Fibonacci numbers or the Golden Ratio. Structural 
symmetry is one of the simplest ways an organism will demonstrate this 
fascinating phenomenon (Livio 115). For example, pentagonal symmetry (five 
parts around a central axis, 72° apart) is quite common in the natural world, 
particularly among the more “primitive” phyla, such as the water net 
(Hydrodictyaceae Hydrodictyon), a green algae (“Live”). Higher in the plant kingdom, 
many flowers exhibit Fibonacci-number petal symmetry, including fruit blossoms, 
water lilies, brier-roses and all the genus rosa, honeysuckle, carnations, geraniums, 
primroses, marsh-mallows, campanula, and passionflowers. Besides symmetrical 
number and arrangement of parts or petals, plants often illustrate the Fibonacci 
sequence in their seed sections or in the spirals that are formed as new parts and 
branches grow. 

 Flowers, Fruits, and Vegetables 

 Spanish poet Salvador Rueda (1857-1933) eloquently said, “las flores son 
matematicas bellas, compass, armonia callada, ritmo mudo,” (flowers are a 
beautiful mathematics, compass, silent harmony, mute rhythm) (Spooner 38). 

 Many flowers display figures adorned with numbers of petals that are in the 
Fibonacci sequence: 

  1 petal: White Calla Lily 
 2 petals: Euphorbia 
 3 petals: Lily, Iris, Euphorbia 
 5 petals: Buttercup, wild Rose, Larkspur, Columbine (Aquilegia), Hibiscus 
 8 petals: Delphiniums, Bloodroot 
 13 petals: Ragwort, Corn Marigold, Cineraria, Black Eyed Susan 
 21 petals: Aster, Shasta Daisy, Chicory 
 34 petals: Plantain, Pyrethrum, Daisy 
 55, 89 petals: Michaelmas Daisies, the Asteraceae family 
 (Sinha; Akhtaruzzaman and Shafie) 
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 One of the largest families of the vascular plants, compositae, contains nearly 2000 
genera and over 32,000 species (“Plant List”) of flowering plants. Compositae (or 
Asteraceae) is commonly referred to as the aster, daisy, composite, or sunflower 
family. Family members are distributed worldwide and have a recognizable, 
“unique disc-shaped inflorescence, composed of numerous pentamerous florets 
packed on an involucrate head, surrounded by ray florets (petals) on the outside.” 
The numbers of ray-florets and disc-florets vary from one plant to another, but 
they all are all “beautiful phyllotactic configurations” due to the arrangement of 
seeds in the seed head.  

The head of a composite displays definite 
equiangular spirals running counter-clockwise 
and clockwise. These bi-directional spirals 
intersect each other, such as: 2/3, 3/5, 5/8, 
8/13, 13/21, 21/34, ... The numerators or the 
denominators of this series are recognizable 
as the Fibonacci sequence. The petal counts of 
Field Daisies are usually thirteen, twenty-one 
or thirty-four and, in the close-packed 
arrangement of tiny florets in the core of a 
daisy blossom, we can see the equiangular 
spiral phenomenon clearly as twenty-one 

counterclockwise spirals swirl in delicate, picturesque motion with thirty-four 
clockwise spirals. In any daisy, the floral tango 
of logarithmic spirals generally consists of 
successive terms of the Fibonacci sequence 
(Britton; Livio 112).  

 The seeds are packed this way on the seed 
head presumably to “reduce the size of the 
florets to the optimum [size] necessary for 
quick production of an adequate number of 
single-seeded fruits” (Majumder and 
Chakravarti). The distribution of the ray-
florets on the heads in Fibonacci number 
structure is indicative of “perfect growth,” 
according to Majumder and Chakravarti. 

Research also indicates that “individual flowers emerge at a uniform speed at fixed 
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Daisy with Equiangular Spiral 

Passion Flower with 3 Sepals and 5 
Outer Green Petals



intervals of time along a logarithmic spiral, with an initial angle at = 137.5° 
(Mathai and Davis, 1974)” (Majumder and Chakravarti). 

 Passion flower, also known as Passiflora Incarnata, is a perfect example of a flower 
regally displaying Fibonacci Numbers, for three sepals protect the bud at the 
outermost layer, while five outer green petals are followed by an inner layer of five 
more, paler, green petals. With an array of purple and white stamens, there are 5 
greenish T-shaped stamens in the center and three deep brown carpels at the 
uppermost layer (Akhtaruzzaman and Shafie).  

I n s uffi c i e n t d a t a a n d “ c a r e l e s s 
methodological practices” cause many 
scientists to doubt or outright refute the 
notion that Fibonacci numbers or the 
Golden Ratio are an absolute "law of 
nature” (Green 937). Jonathan Swinton and 
Erinma Ochu aimed to remedy the lack of 
scientific evidence by studying and 
recording the occurrence of Fibonacci 
structure in the spirals (parastichies) of 657 
sunflower (Helianthus annuus) seed heads at 
the MSI Turing's Sunflower Consortium. 
The sunflower has 55 clockwise spirals 

overlaid on either 34 or 89 counterclockwise 
spirals, a phi proportion (Phi Φ =1.618 …) 

(Wright). The most reliable data subset of 768 clockwise or anticlockwise 
parastichy numbers revealed a clear indication of a dominance of Fibonacci 
structure: 565 were Fibonacci numbers and 67 had a predefined type of Fibonacci 
structure. They also found “more complex Fibonacci structures not previously 
reported in sunflowers” and seed heads without Fibonacci structure (nearly 20%). 
Some seed heads without Fibonacci structure nevertheless had a tendency for 
counts to cluster near the Fibonacci number; in those, “parastichy numbers equal 
to one less than a Fibonacci number were present significantly more often than 
those one more than a Fibonacci number.” The research also revealed the 
“existence of quasi-regular heads, in which no parastichy number could be 
definitively assigned” (Swinton and Ochu).  
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Sunflower with 89 Clockwise and 55 
Counterclockwise Parastichies



The bumps and hexagonal scales (bracts) on 
the surface of pineapples form three distinct 
spirals in increasing steepness, creating a 
recognizable pattern of Fibonacci numbers 
(usually 5, 8, and 13) and the Romanesco 
Broccoli (looks and tastes like a cross 
between broccoli and cauliflower) has a 
shape almost like a pentagon with florets 
organized in spirals in both directions 
around the center point, where the florets 
are smallest (Posamentier and Lehmann; 
Knott). Other fruits have Fibonacci 
numbers in the i r seeds ’ sec t iona l 

arrangements. Three sections are easy to see in 
the cut cross-sections of the Banana, Cantaloupe, Cucumber, Kiwano fruit 
(African cucumber), and Watermelon. Star Fruit, Okra, and Apple seeds are 
arranged in a pentagram shape of five sections (Akhtaruzzaman and Shafie). 

 Spirals, Branches, and Leaves   

 According to Scotta and Marketos, the Fibonacci spiral is “fundamental to organic 
life.”  They admit that it is “not always clear why these numbers appear,” but it 
appears that they “reflect minimization or optimization principles of some sort, 

namely the notion that nature is efficient yet 
‘ l a z y, ’ m a k i n g t h e m o s t o f a v a i l a b l e 
resources” (Scotta and Marketos). New growth 
may simply form spirals so that the new leaves, 
petals, and branches will not block older leaves, 
etc. from sunlight or air, or so that the maximum 
amount of rain or dew will get directed down to 
the roots (Akhtaruzzaman and Shafie). Others 
suggest the logarithmic spiral may be a “natural 
outcome of the supply of genetic material in the 
form of pulses at constant intervals of time and 
obeying the law of fluid flow” (Majumder and 
Chakravarti). 
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 In the world of nature, things grow by adding some unit, even if the unit is as 
small as a molecule. Michael Wright says phi is “an ideal rate of growth for things 
which grow by adding some quantity,” such as the nautilus and sunflower 
(Wright). In addition to pineapples, the nautilus, and the sunflower, spirals are 
found in pinecones, ginger plants, artichokes, and other plants, including 
numerous cacti (Britton; Livio 110-111). 

 In 1868, Wilhelm Hofmeister suggested that new cells destined to develop into 
leaves, petals, etc. (primordia) “always form in the least crowded spot” on the 
meristem (growing tip of a plant). Each successive primordium of a continuously 
growing plant “forms at one point along the meristem and then moves radially 
outward at a rate proportional to the stem's growth” (Seewald). The second 
primordium grows as far as possible from the first, and the third grows at a 
distance farthest from both the first and the second primordia (Seewald). In the 
1830s, scientist brothers found that the rotation tends to be an angle made with a 
fraction of two successive Fibonacci Numbers, such as 1/2, 1/3, 2/5, 3/8 
(Akhtaruzzaman and Shafie). “As the number of primordia increases, the 
divergence angle eventually converges to a constant value” of 137.5° thereby 
creating Golden Angle Fibonacci spirals (Seewald).  
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 The fact that branches and leaves of plants follow certain mathematical growth 
patterns was first noted in antiquity by Theophrastus (ca. 372 B.C. – ca. 287 B.C.) 
but the phenomenon was first called phyllotaxis (“leaf arrangement” in Greek) in 
1754 by the Swiss naturalist Charles Bonnet (1720-1793) (Livio 109-110). 
Patterns with the other fractions are also observed, though uncommonly (Okabe). 
Professor Emeritus H. S. M. Coxeter at the University of Toronto, in his 
Introduction to Geometry admits that some plants exhibit phyllotaxis numbers that 
“do not belong to the sequence of f's [Fibonacci numbers] but to the sequence of 
g's [Lucas numbers] or even to the still more anomalous sequences 3,1,4,5,9,... or 
5,2,7,9,16,....” He concludes we must face the fact that phyllotaxis is really not a 
universal law but only a fascinatingly prevalent tendency favored by nature 
(Coxeter). 

 The Sneezewort is a simple plant that exhibits the Fibonacci sequence. New 
shoots commonly spring from the main stem at an axil. Horizontal lines drawn 
through the axils highlight obvious stages of development in the plant. The 
pattern of development mirrors the growth of the rabbits in Fibonacci's classic 
problem; that is, the number of branches at any stage of development is a 
Fibonacci number.  “Furthermore, the number of leaves in any stage will also be a 
Fibonacci number” (Britton).  

 Palms are ideal specimens of the plants that display spiral phyllotaxis because 
their large leaves are prominently arranged (and therefore easily observed) on the 
trunk. Palm leaves are arranged in Fibonacci sequence spiral formation, overlap 
least and provide an “angular deflection between consecutive leaves that, together, 
comprise a photosynthetic surface optimally accessible to illumination” (Davis; 
Majumder and Chakravarti). 

 The initial leaves are often 180° apart. As the stem matures, it thickens, and the 
spiral pitch between leaves decreases. “The result of this process is that angular 
divergence of new leaves gradually approximates the golden angle. This gives rise 
to an approximate logarithmic spiral of touching leaves” (Green). On the oak tree, 
for example, the branch rotation is a Fibonacci fraction, 2/5, which means that 
five branches spiral two times around the trunk to complete one pattern. Other 
trees with the Fibonacci leaf arrangement are the elm tree (1/2), the beech (1/3), 
the willow (3/8) and the almond tree (5/13) (Livio 113-115). 

 Okabe refers to Fibonacci phyllotaxis as evidence of natural selection, which 
eliminates plants whose growth patterns do not turn following the Golden Angle 
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2πα0 = 137.5◦ He says those which follow this process are “favored in nature” 
because the Golden Angle is structurally “the most stable” because it undergoes 
the least (though inevitable) phyllotactic structural changes (stepwise transitions 
between phyllotactic fractions) during early stages of the growing process to a 
mature plant (Okabe).   

 F I B O N A C C I  I N  I N S E C T S  

 Nature’s language is empirically mathematical. As Salvador Rueda says in “La 
Nitidula,” the insect’s “dos vuelos descurbrn/sus hermeticas palabras” (two wings 
disclose/its hermetic words). Simple observation of the body sections of ants and 
millipedes, the wing dimensions and location of eye-like spots on moths, and the 
beautiful design of butterfly wings reveal shapes related to the Golden Ratio 
(Meisner). But even more intricate biological aspects of some insects illustrate 
properties of the Fibonacci sequence and the Golden Ratio.  

 For example, from studies of the sensory reaction and attendance frequency of 
plant pollinators and their relationships with flowers, Leppik found that most 
pollinating insects have the ability to distinguish angular-form and radial-
symmetry in flowers (Leppik). Even more remarkable is the fact that some insects 
have powers not limited to the recognition of mathematical shape and structure; 
they are capable of creating such harmonious structure, as well. Indeed, Rueda 
poetically describes the inhabitants of the beehive as geometers (skilled in 
geometry): 

 Llenas de logaritmos sus celulas obscuras, 
encierran de un misterio la gran filosofia, 
y rie entre sus mallas armonicaas y puras 
el cuerpo rubio y ritmico que encierra la ambrosia.  

 (Filled with logarithms its dark cells 
enclose in mystery the great philosophy, 
and the golden rhythmic army that surround the ambrosia 
laugh away their harmonious pure mazes.) 
(Spooner) 

 Honey bees, like certain fish, construct their honeycombs in the form of a 
hexagonal lattice (Spooner 38). Their hives as a whole are elliptical in shape 
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(Stakhov 27). Perhaps honeybees instinctually know that “the geometrical 
correlations of the golden ellipse give optimal conditions for the attainability by 
photons ...with minimal energetic losses,” as Polish scientist Jan Grzedzielski 
(Energetic and Geometric Nature Code) found when studying the golden ellipse. 
Before he was murdered by the Gestapo in 1941, the physician and professor 
observed that the golden ellipse can be used as a geometric model for the 
spreading of the light in optic crystals (Stakhov 27).  

 Fibonacci and Honeybees: Family Tree 

 Speaking of bees, there are between 20,000-30,000 species of bees but the one 
most familiar is the honeybee, which lives in a 
colony called a hive. Honeybees have an 
unusual family tree; this is due to the fact that 
male honeybees have only one parent. Dr. 
Knott explains why:  

The  queen produces the eggs in a colony of 
honeybees. Worker honeybees are female and 
produce no eggs. Drone honeybees are male; 
their job is to mate with the queen. The 

queen's unfertilized eggs produce males, so male 
honeybees have a mother but no father! All 

female honeybees are produced from fertilized eggs, when the queen has mated 
with a male, so they have two parents. Females most often end up as worker 
honeybees; only a few are fed with a special substance called  royal jelly which 
makes them grow into queens who will leave the hive to start new colonies by 
taking swarms of honeybees with them to build new nests. 

 So female honeybees have two parents, a male and a female, whereas male 
honeybees have just one parent, a female. 

 Dr. Knott portrays the Honeybee Family Tree as showing  parents above their 
children, so newer generations are at the bottom and older generations are higher. 
Such trees are valuable because they show the lineage of ancestors (predecessors, 
forebears, antecedents) of the creature at the bottom of the diagram. This is 
different from the family tree charts of the rabbit problem, which show 
descendants of the original pair (progeny or offspring) at the bottom.   
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 Family Tree of a Male Drone [Honey]Bee 

 He had  1  parent, a female. Since his mother had two parents, he 
has 2 grandparents, a male and a female. Since his grandmother had two parents 
but his grandfather had only one, he has 3 great-grand-parents. 

 The numbers of ancestors in each generation of the honeybee are Fibonacci 
numbers:  

 F I B O N A C C I  I N  A N I M A L S  

 The ubiquity of logarithmic spirals in the animal, bird, and plant kingdoms 
presents a convincing case for a cosmic character of the Golden Ratio (Boeyens 
and Thackeray). Livio says Fibonacci numbers are “a kind of Golden Ratio in 
disguise,” as they are found in even microscopic places, such as in the 
microtubules of an animal cell. These structures are “hollow cylindrical tubes of a 
protein polymer” which make up the cytoskeleton. This is the structure that 
“gives shape to the cell and also appears to act as a kind of cell ‘nervous system.’ 
Each mammalian microtubule is typically made up of thirteen columns, arranged 
in five right-handed and eight left-handed structures (5, 8, and 13 are all Fibonacci 
numbers).” Occasionally there are double microtubules with an outer envelope 
consisting of 21 columns, the next Fibonacci number. Some investigators argue 
that microtubules are more efficient "information processors" because they are 
structured this way rather than with other possible structures; however, Livio 
admits that “the apparent connection with the Fibonacci series may be 
coincidental” (Livio).  

 German psychologist Adolf Zeising (1810 –1876) studied the skeletons of animals 
and the branching of their veins and nerves. He observed that there are a lot of 
examples of the Golden Section or Divine Proportion found in animals, fishes, and 

Number of . . . Male Honeybee Female Honeybee

Parents 1 2

Grandparents 2 3

Great-grandparents 3 5

Great, Great-grandparents 5 8

Great, Great, Great-grandparents 8 13
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birds, in addition to insects and snails. For example, the natural design of a 
Peacock’s feather hints at the Golden Ratio, the eye, fins and tail of a dolphin 
appear to fall at Golden Sections of the length of its body, and a penguin body 
exhibits Golden Ratio properties (Akhtaruzzaman and Shafie). Some see the 
Golden Spiral in the shape of the horns of both the ram and the kudu and in the 
curvature of elephant tusks (Boeyens and Thackeray; Masran; D'Agnese). Animal 
biology would seem to follow the same spontaneous growth patterns exhibited by 
plants. It must be noted, however, that many contemporary scholars dismiss such 
(and similar) claims by Golden Ratio adherents like Ghyka, the Romanian 
novelist, mathematician, historian, and philosopher who said, "Diagrams of 
proportions, however diversely arranged, can be deciphered by the same [Golden 
Ratio] key." Ghyka, for example, offered a "harmonic analysis" of a thoroughbred 
horse which showed that ratios between the length of the leg to the vertical 
thickness of the body are φ. These claims should be viewed with a “healthy degree 
of skepticism in the absence of full and replicated scientific reports,” however 
(Green). 
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 F I B O N A C C I  I N  M A R I N E  L I F E  

 Md. Akhtaruzzaman and Shafie mention many sea creatures which exhibit the 
Golden Proportion in one form or another. For example, they describe the body of 
the Rainbow Trout fish as having a shape on which “three Golden Rectangles 
together can be fitted” and “the tail fin falls in the reciprocal Golden Rectangles 
and square.” Additionally, the individual fins also have the Golden Section 
properties” (Akhtaruzzaman and Shafie). 

 A wide variety of sea creatures also exhibit pentagonal symmetry. For example, 
the sea star (Astropecten Aurantiacus), the star fish (Ophiotrix capillaris) and the 
sand dollar (Echinarachnius parma) exhibit five-fold symmetry (Trinajstic) which 
Md. Akhtaruzzaman says “has a close intimacy with Golden Ratio.” In addition, 
the growth patterns of natural shells like Conch Shell, Moon Snail Shell, and 
Atlantic Sundial Shell show logarithmic spiral growth patterns of Golden Section 
properties or golden spiral form (Akhtaruzzaman and Shafie). The chambered 
nautilus (Nautilus pompilius) is a specific example of one of the marine creatures 
whose structure represents a spontaneous logarithmic spiral growth pattern. This 
pelagic marine mollusk of the cephalopod family displays the self-similarity 
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characteristic of an intrinsic response to environmental constraint, growing larger 
on each spiral by phi, according to Wright (Boeyens and Thackeray; Wright). 

   

 F I B O N A C C I  I N  B I R D S   

 The logarithmic spiral is equiangular: if you draw a straight line from the center of 
the spiral (pole) to any point on the spiral curve, the line always cuts the curve at 
precisely the same angle. Vance A. Tucker, a biologist at Duke University in 
Durham, North Carolina, found that falcons appear to capitalize upon this fact by 
keeping a slightly curved diving trajectory while hunting prey. Rather than 
plummeting in a straight line, the predatory birds keep “their heads straight while 
keeping their target in view from the most advantageous angle,” naturally 
following “the curve of a (highly drawn-out) logarithmic spiral” in their angle of 
descent (Livio 120). Hawks appear to take the same (or a similar) approach when 
hunting their prey (Chin).  

 F I B O N A C C I  I N  U N I V E R S E / S PA C E  

 The Milky Way Galaxy, the Andromeda nebula, and the spiral Galaxy M81 have 
spiral patterns resembling the Golden Spiral (Scotta and Marketos; Meisner). Not 
so obvious are the Golden Ratio properties some scientists propose exist between 
the distribution of planets, moons, asteroids and rings in the solar system 
(Boeyens and Thackeray; Akhtaruzzaman and Shafie). Some astronomy 
hypotheses attempt to explain solar system formation by considering the mean 
distances of the planets from the sun. Engineers Md. Akhtaruzzaman and Amir A. 
Shafie theorize that, if the measurement of orbital distances of planets is started 
from Mercury, the first planet of the solar system, rather than Earth, the third, and 
the average of the mean planet orbital distances of each successive planet is taken 
in relation to the one before it, the value will approximate the Golden Ratio 
(Akhtaruzzaman and Shafie). 

 9 9



Mean distance in million 
kilometers as per NASA

Relative mean distances where 
Mercury is considered at the 

beginning
Mercury 57.91 1

Venus 108.21 1.86859

Earth 149.6 1.3825

Mars 227.92 1.52353

Ceres (largest object in asteroid belt) 413.79 1.81552

Jupiter 778.57 1.88154

Saturn 1,433.53 1.84123

Uranus 2,872.46 2.00377

Neptune 4,495.06 1.56488

Pluto 5,869.66 1.3058

Total Relative Mean Distance 16.18736

The Average 1.61874

Golden Ratio 1.61803

 1 0 0

Akhtaruzzaman and Shafie / Source: fibonacci.com 

Galaxy Spiral



  

 F I B O N A C C I  I N  G E O G R A P H Y  A N D  W E A T H E R  

 Fibonacci sequence numbers and relationships between them are displayed in sea 
wave curves and in the tributary patterns of stream and drainage patterns and in 
weather patterns which sometimes very closely match the Golden Spiral, such as 
whirlpools and hurricanes (Scotta and Marketos; Tracy). Both Hurricane Sandy 
and Hurricane Katrina were said to have manifested the Golden Spiral structure 
(Boeyens and Thackeray). 

  
F I B O N A C C I  I N  H U M A N S  

 The same phenomena of Phi that is found in nature’s objects from snail shells to 
the spirals of galaxies is found also in the design and structure of the human body. 
For example, the cochlea of the ear is a Fibonacci spiral as is the spiral of the 
umbilical cord. The progression of the Fibonacci numbers and ratio are well suited 
to describing organic growth in the human body because they have the properties 
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of self-similarity and of “gnomonic growth;” that is, only the size changes while 
the shape remains constant. The majority of organs in the human body maintain 
their overall shape and proportions as they grow (Sacco).  

 Simple observation confirms that Fibonacci numbers are represented by many 
human parts: one trunk, one head, one heart, etc. Then there are pairs: arms, legs, 
eyes, ears. Three is represented by the number of bones in each leg and arm and 
the three main parts of the hand: wrist, metacarpus and set of fingers consisting of 
three phalanxes, main, mean and nail. Considering each finger individually, the 
lengths the phalangeal bones relate to each other according to the rule of golden 
proportion (Akhtaruzzaman and Shafie). These dimensions allow for the flawless 
execution and adaptability of “transitory movements of the digits” when grasping. 
Specifically, radiological and anatomical studies show that  “the lengths for the 
index, long, and ring fingers follow a newly identified, specific mathematical 
pattern, the Littler series, which is closely related to the Fibonacci series” (Yetkin, 
et al.; Hutchison and Hutchison). 

 Five appendages adjoin the torso: the arms, legs and a head; five appendages are 
on each of these: five fingers on hands and foot; and there are five openings on the 
face. Through these, five senses equip the body to interact with the world around 
it: sight, sound, touch, taste and smell. Back to the hand, five fingers are 
connected to five metacarpal bones forming the basis of the palm, which is 
connected to the wrist structure.  

 Continuing the count, the human arm together with fingers consists of eight 
parts. There are 12 pairs of ribs but some claim (without scientific evidence) that 
man in the past had 13 pairs of ribs. Fourteen facial bones, six middle ear bones 
and the throat total 21 bones. Human backbone with the skull consists of 34 
bones: Eight skull bones (Crania), 24 Vertebrae, one Sacrum and one Coccyx. The 
base column of human body structure therefore totals 55 (21 + 34 = 55) bones 
(Akhtaruzzaman and Shafie). All of these numbers - 1, 2, 3, 5, 8, 13, 21, 34 and 
55 - are numbers in the Fibonacci series. 

 Many features of the "ideal" human face are said to have ratios equal to φ; the 
dimension relationships between the eyes, ears, mouth and nose, for instance. 
The ratio of the height of the whole head to that of the head above the nose is also 
said to be Phi (Akhtaruzzaman and Shafie). Other examples supposedly include 
the ratio between the total height of the body and the distance from head to the 
finger tips, and “the distances from head to naval and naval to hill.” Then there is 
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the proportion between the forearm and upper arm and the one between the hand 
and forearm; all of these are said to follow the rule of Golden Ratio 
(Akhtaruzzaman and Shafie). 

 Dentists interested in the health of their patients study the relationships between 
dental aesthetics and the golden proportion. According to Dr. Stephen Marquardt, 
an eminent oral surgeon in California, “the height of the central incisor is in 
Golden Proportion to the width of the two central incisors.” Dentists have used 
this information when addressing “a host of dental aesthetic problems.” Golden 
Proportion grids have been developed which show Golden Rectangle relationships 
between the widths and heights of eight teeth of the anterior aesthetic segment, 
the incisors. In addition, the four front teeth, from central incisor to premolar, are 
in Golden Proportion to each other. In "Maxillary and Mandibular Teeth 
Widths" (1985), Dr. McArthur explained that “the average ratio of upper central 
incisor to lower central incisor is 1.62.” Soon after, in 1987, Shoemaker “wrote a 
series of articles promoting the use of the Golden Proportion as an adjunct to 
cosmetic Dentistry.” The article, "Le nombre d'or" (1989) by Amoric showed 
“many Golden Proportions in cephalometric tracings at various stages of facial 
growth and also included geometrical propositions.” 

 In that same year, The Annals of Plastic Surgery (1989) featured the investigations of 
Kawakami et al. who measured for Golden Proportion balance between the eyes, 
nose and mouth in the facial appearance of typical Japanese individuals and 
compared the ratios to measurements in Caucasians. “Each ratio was then used 
for pre and post-operative aesthetic analysis” (Kawakami).  

 Similar purpose motivated dentist Yosh Jefferson in 1996 to provide Golden 
Proportion diagrams, cephalometric tracings, and computer-generated 
photographs in “Facial Beauty - Establishing a Universal Standard” to depict an 
ideal structure for the human head. He believed “there are possibly billions of 
examples of divine proportion within the human body” and “all living organisms, 
including humans, are genetically encoded to develop and conform to the divine 
proportion.” The purpose of Dr. Jefferson’s study was to establish a universal 
standard for facial beauty regardless of race, age, or sex; but his stated intent was 
not to empower or support discrimination. His hope was that his work would 
simplify the diagnoses and treatments of facial-skeletal structure misalignments in 
patients, thereby improving not only their dental and physical health but (as 
consequence) also their emotional and psychological health (Jefferson).  
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 Elsewhere in the human body, internal organs also exhibit Golden Ratio 
relationships. Belgian gynecologist Jasper Verguts, at the University Hospital 
Leuven, says “gynecologists can instantly tell whether a uterus looks normal or 
not based on its relative dimensions” (Bellos). Uterine size varies in relation to 
age and gravidity (the number of times a woman has been pregnant). Dr. Verguts 
conducted ultrasound measurements of uteruses in 5,466 non-pregnant women 
and created a table showing the average ratio of a uterus's length to its width for 
different age bands (Verguts). 

 The data shows that the mean length/width ratio averages 1.857 at birth, 
decreasing to 1.452 at the age of 91 years. At the age when women are at their 
most fertile, between the ages of 16 and 20, the ratio of length to width is 1.6, “a 
very good approximation to the Golden Ratio” (Verguts, et al.; Bellos). 

 According to some, even the human heart beats in Golden Proportion rhythm. 
Doctors Gulay Yetkin, Nasir Sivri, Kenan Yalta, and Ertan Yetkin assessed the ratio 
of cardiac phases (diastole and systole) in 162 healthy subjects aged 20 years to 40 
years after they had rested in the supine position for fifteen minutes and found 
that the diastolic time interval to systolic time interval ratio was 1.611 and the R–
R/diastole ratio was 1.618 (Yetkin, et al.). 

 In addition to its activity, the human cardiovascular system is structured according 
to Golden Ratio design. Ashrafian and Athanasiou found that coronary arteries are 
distributed sequentially in a pattern that follows the Fibonacci series, resembling 
phyllotaxis seen in other branches in nature. Moreover, “data from 36 species has 
shown that the association of cardiac diameters by the sum of the diameters of all 
13 branches across these species is in the order of the Golden Ratio, 
1.618” (Yetkin, et al.; Ashrafian and Athanasiou). Even “diseased atherosclerotic 
lesions in coronary arteries follow a Fibonacci distribution” (Yetkin, et al; Gibson, 
et al).  

 On the molecular level, the nucleotide spirals of human DNA have Fibonacci 
proportions. Further research is needed to discover the way in which “the 
crystallographic structure of DNA, stress patterns in nanomaterials, the stability 
of atomic nuclides and the periodicity of atomic matter depend on the Golden 
Ratio” (Boeyens and Thackeray). Meanwhile, recent genetic research has 
determined that the cross-section of microscopic double helix of DNA illustrates 
the Phi ratio. Each spiral of the double helix traces the shape of a pentagon. The 
DNA molecule “measures 34 angstroms long and 21 angstroms wide for each full 
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cycle of its double helix spiral model” so its ratio is 1.6190476, close to the ratio 
of Phi, 1.61803.  Since the primary DNA structure molecule is formed according 
to Fibonacci sequence, it is assumed that linker segments between molecules are 
also formed according to this mathematical regularity (Shabalkin, et al.).  

 Just as beautiful art and music reflect harmony in nature, so, too, does the most 
efficient human walking pattern (gait). Roman professor and neurophysiologist 
Marco Iosa used a stereophotogrammetric system with 25 retroreflective markers 
located on the skin to analyze the spatiotemporal gait parameters of 25 healthy 
human subjects. Repetitive gait phases following the Golden Ratio during 
physiological walking were found to be most energy efficient; the ones which were 
“in repetitive proportions with each other,” revealed “an intrinsic harmonic 
structure.” The conclusion was that this Golden Ratio “harmony could be the key 
for facilitating the control of repetitive walking.” Thus, harmony is not only an 
important component for establishing balance in art and music, it also plays a part 
in facilitating the maximum effective, harmonic rhythm of walking for humans 
(Iosa, Fusco, et al.; Iosa, Morone et al.). 
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 F I B O N A C C I  I N  R O B O T I C S  A N D  T E C H N O L O G Y  

 The use of Fibonacci numbers to inform computer science engineering has the 
power to improve the lives of countless humans. Computer science and 
automation engineer from University of Florence (Italy) Claudio Fantacci 
conducted a case study involving the testing of a model of malware propagation in 
a computer network. He used a random generalized Fibonacci sequence to test 
random rates of computer infection within finite time frames because “several 
systems both in biology and economy are well represented by Fibonacci binary 
random trees” (Farina, Fantacci, and Frasca). This research is expected to help 
robotics engineers better anticipate and prevent disruptions in humanoid robot 
kinematic platforms, or robot-assisted human applications (such as the 
development of prostheses for loss of limb patients).  

 Physicist Zexian Cao and colleagues from the Chinese Academy of Sciences in 
China have performed stress engineering to create Fibonacci-sequence spirals on 
microstructures grown in the lab, and they think they have discovered the reason 
why the Fibonacci sequence is so ubiquitous in nature – it is a natural 
consequence of stress minimization (Cartwright).  

 They coated a curved "core" material of silver with a SiO2 shell material at a high 
temperature. Because material thermal expansion differs, when the composite is 
then cooled in a restricted geometric shape, “selective parts of the shell buckle 
under stress, causing patterns to form.” They created microstructures just 12 µm 
across and discovered that shells directed into spherical shapes during cooling 
developed triangular stress patterns. Forced conical shapes, however, caused spiral 
stress patterns to be formed. These spiral patterns had dimensions governed by 
the Fibonacci series, "Fibonacci spirals" (Cartwright).  

 This tendency may be related to something the physicist J. J. Thomson researched 
in 1904 when he sought “how a collection of like-charges would arrange 
themselves on a conducting sphere so as to minimize energy. Physicists have since 
calculated that the charges would take on triangular patterns - similar to Cao's 
spherical microstructures.” Therefore, Cao's team conclude that the Fibonacci 
spirals on the conical microstructures must be the equivalent minimum-energy 
(and hence minimum-stress) configuration for a cone. Further research and 
calculations need to be conducted to prove their theory (Cartwright). 
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 Cao’s experiment using pure inorganic materials may serve as the first concrete 
proof of the theory long held by biologists that “the branching of trees and other 
occurrences of the Fibonacci sequence in nature is simply a reaction to minimize 
stress." Creating Fibonacci patterns from stress engineering invites possible 
applications in photonics; Cao says, "Fibonacci spirals are a special lattice; I would 
say they are both ordered and disordered. If the lattice points were some materials 
of a proper 'dielectric,' it may provide a new photonic crystal that displays some 
interesting properties" (Cartwright). Photonic crystals can be used to develop 
biosensor technologies and materials capable of artificial touch in relation to 
humanoid robotics (Android) structural engineering.  

 C O N T E M P O R A RY  C R I T I C I S M  

 While some researchers maintain that the Golden Ratio is a governing force in 
nature and may even be “a universal law,” others conclude that the evidence 
presented to support the relationships between Fibonacci numbers and natural 
systems have been “traditionally chock through with myths, half-truths, and 
misconceptions” (Green). To the detractors, further scientific study is required to 
prove these relationships and their ubiquity. Nevertheless, some, “more carefully 
conducted studies have fairly consistently shown that there is, in fact, a set of 
phenomena that require explanation, though no one has yet produced an 
explanation, both adequate and plausible, that has been able to stand the test of 
time” (Green).  

  

 L E O N A R D O  P I S A N O :  H O N O R A R I U M  

 To some degree, Leonardo Pisano Bigollo is a forgotten man, for he is primarily 
obliquely remembered by a name he did not choose. Perhaps he did not expect or 
desire to be known as a famous mathematician or even a teacher. After all, he 
deliberately referred to himself as Bigollo in some manuscripts, which could be 
construed to suggest he was a “man of no importance” (Venetian dialect) or, at 
the very least, a common traveler (Tuscan dialect) (Livio 93).  

 It was neither his purpose nor his goal to become famous. Perhaps this humble 
man methodically and meticulously compiled his mathematics instruction books 
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only to fulfill the terms of a personal purpose which he clearly professes in his 
autobiographical statement in the Introduction to Liber Abaci (1228):  

 Almost everything which I have introduced I have displayed with exact proof, in order that 
those further seeking this knowledge, with its pre-eminent method, might be instructed, and 
further, in order that the Latin people might not be discovered to be without it, as they have 
been up to now.  
(Horadam)  

 It is surely best to take him at his word when he testified that his intent was to 
provide for his extended family, his nation, and his people. By working to serve 
and provide for others, Leonardo’s legacy endures; it is a living history. 

 Yes, Leonardo Pisano might be remembered primarily as the man with the “Rabbit 
Problem” or Fibonacci. But at the turn of the thirteenth century in Pisa, a humble 
mathematician tackled a significant problem stringently and provided the perfect 
solution: education. Through meticulous writing he equipped Europe for an 
evolutionary leap of economic consciousness and his instrument (knowledge) 
would prove to revolutionize the world. 

 One of the most famous professors in Italian history became an anonymous 
teacher, a man buried inside the consciousness of countless others, some 
esteemed, some mere bigollos. Eventually the “forgotten” man became the 
namesake for a principle in nature, of which we have not yet seen the beginning or 
end. 
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